
Introduction

General Instrument Corporation is a major international company manufacturing a wide range of products from data system, cable TV, component product to semiconductors. The Corporation, which has been in existence over 50 years, has factories throughout the world serving all markets.

The discrete semiconductor division has factories in United States and Far East, and is one of the leading manufacturers of rectifiers and bridges. This catalog details our range of low and medium power rectifier products and bridge assemblies, including SUPERECTIFIERS, plastic encapsulated rectifiers, glass passivated rectifiers, bridges and special assemblies. The information, contained in this booklet, is intended to provide the necessary technical and support data to assist the designer.

Particular emphasis has been focused on the SUPERECTIFIER product family, a new concept in rectifier technology, launched some three years ago. Featuring a metallurgically bonded junction, glass passivation and flame retardant epoxy encapsulation to provide the ultimate in rectifier quality and reliability.

It is our policy to maintain high standards of product manufacture and the GI logo printed on every component ensures that it reaches the high level of quality and reliability. In the complex and competitive semiconductor industry, high standards of quality are of the utmost importance since they constitute, for the customer, the assurance of reliable product performance.

Not every application problem can be solved using a standard device, in this case we often develop special products to meet the customer requirements. If in doubt, call your local Sales Office or our Application Engineering Laboratory (listed on page 111) for further information.

SYMBOLS

Forward Current ŀ

Average Forward Rectified Current I_{F(AV)} Peak Forward Surge Current I_{FSM} Mean Forward Current

lo I_R **Reverse Current**

iπ I²t **Reverse Recovery Current**

I²t Rating for Fusing

Thermal Resistance (Juntion to Ambient) R_{TH(J-A)} $R_{\text{TH(J-C)}}$ Thermal Resistance (Juntion to Case)

TA **Ambient Temperature** Case Temperature Tc Lead Temperature T_L Reverse Recovery Time V_{BR} Breakdown Voltage Forward Voltage

Forward Recovery Voltage V_{FR}

V_R Reverse Voltage V_{RMS} **RMS Input Voltage**

V_{RRM} Repetitive Peak Reverse Voltage

٧z Zener Voltage Dynamic Impedance Zĸ

DRAWINGS

All dimensions in mm. Figures not to scale.

TEMPERATURES

Ratings at 25°C ambient temperature unless otherwise specified.

Forward derating curves are measured while leads are hold to ambient temperature in a distance of 10 mm to the case except all KBPC-Bridges, where case temperature is measured.

This General Instrument data book - containing short form data sheets - is not a document for official acceptance tests. Relevant is only the detailed data sheet, which is available on request.

The Manufacturer reserves the right to change the contained data at any time in order to improve performance and supply the best product possible.

CONTENTS

General Information	Page
Introduction -	3
Symbols	4
Contents	5
Numerical Index	6
Application Survey	8
Plastic Rectifiers	
Introduction	11
Quick Guide	14
Miniature Plastic Rectifiers 1 AMP	15
Plastic Power Rectifier 1.2 to 5 AMP	16
High Current Plastic Rectifiers 6 to 25 AMP	19
High Voltage Plastic Rectifiers 1 to 15 KV	24
Glass Rectifiers	
Introduction	29
Quick Guide	32
Glass passivated Diodes 0.4 AMP	33
Glass passivated Rectifiers 1 to 3 AMP	34
Glass passivated Fast Recovery Rectifiers	41
Glass passivated High Voltage Rectifiers 1.4 to 5 KV	46
List of approved JAN-JANTX devices	49
Superectifiers	
Introduction	51
Quick Guide	54
Miniature Superectifiers 0.4 to 1 AMP	55
Power Superectifiers 1 to 3 AMP	60
Fast Recovery Superectifiers 0.1 to 3 AMP	69
Controlled Avalanche Superectifiers	76
Zenef Superectifiers	77
Bridge Rectifiers	
Introduction	79
Quick Guide	81
Miniature Bridge Rectifiers 0.5 to 1.5 AMP	82
In Line Bridge Rectifiers 1.5 to 5 AMP	90
High Current Bridge Rectifiers 3 to 35 AMP	96
Tigh Culter bridge Nactine's 3 to 33 AMP	90
Quality Assurance	
Introduction	105
Test Conditions	106
High Reliability-Test capabilities	107
Packaging Information	108
Sales Offices	111

Туре	Page	Туре	Page	Туре	Page	Туре	Page
1N645	33	1N4943	41	1N5626	39	B250C1000	84
1N645GP	55	1N4944	41	1N5626GP	67	B250C1500	85
1N646	33	1N4944GP	72	1N5627	39	B250C1500C	86
1N646GP	55	1N4945	41	1N5627GP	67	B250C3700/2200	94
1N647	33	1N4946	41	2KBP005	91	B250C5000/3300	95
1N647GP	55			2KBP003	91	B380C500	82
	33	1N4946GP	72	2KBP04	91	B380C800	83
1N648		1N4947	41	2KBP06	91	B380C1000	84
1N648GP	55	1N4947GP	72	2KBP08			85
1N649	33	1N4948	41		91	B380C1500	
1N649GP	55	1N4948GP	72	2KBP10	91	B380C1500C	86
1N1730A	24	1N5059	36	2W005	89	B380C3700/2200	94
1N1731A	24	1N5059GP	60	2W02	89	B380C5000/3300	95
1N1732A	24	1N5060	36	2W04	89	BA157GP	71
1N1733A	24	1N5060GP	60	2W06	89	BA158GP	71
1N1734A	24	1N5061	36	2W08	89	BA159DGP	71
1N3611	34	1N5061GP	60	2W10	89	BA159GP	71
1N3611GP	56	1N5062	36	AGP15-200	76	BY126GP	64
1N3612	34	1N5062GP	60	AGP15-400	76	BY127GP	64
1N3612GP	56	1N5391GP	62	AGP15-600	76	BY133GP	61
1N3613	34	1N5392GP	62	AGP15-800	76	BY134GP	61
1N3613GP	56	1N5393GP	62	AR25A	20	BY135GP	61
1N3614	34	1N5394GP	62	AR25B	20	BY206GP	70
1N3614GP	56	1N5395GP	62	AR25D	20	BY207GP	70
1N3957GP	56	1N5396GP	62	AR25G	20	BY226GP	65
1N4001	15	1N5397GP	62	AR25J	20	BY227GP	65
1N4001GP	57	1N5398GP	62	AR25K	20	BY228	47
1N4002	15	1N5399GP	62	AR25M	20	BY251P	17
1N4002GP	57	1N5400	16	B40C500	82	BY252P	17
1N4003	15	1N5401	16	B40C800	83	BY253P	17
1N4003GP	57	1N5402	16	B40C1000	84	BY254P	17
1N4004	15	1N5403	16	B40C1500	85	BY255P	17
1N4004GP	57	1N5404	16	B40C1500C	86	BY296P	22
1N4005	15	1N5405	16	B40C3700/2200	94	BY297P	22
1N4005GP	57	1N5406	16	B40C5000/3300	95	BY298P	22
1N4006	15	1N5407	16	B80C500	82	BY299P	22
1N4006GP	57	1N5408	16	B80C800	83	BY500-100	23
1N4000GF	15	1N5614	42	B80C1000	84	BY500-200	23
1N4007 1N4007GP	57	1N5615	43	B80C1500	85	BY500-400	23
			42	B80C1500C	86	BY500-600	23
1N4245 1N4245GP	35	1N5616 1N5617	43	B80C3700/2200	94	BY500-800	23
	58	1N5618		B80C5000/3300	95	BYX55-350P	21
1N4246	35		42	B125C500	82	BYX55-600P	21
1N4246GP	58	1N5619	43	B125C800	83	CG1	46
1N4247	35	1N5620	42	B125C800 B125C1000	84	DG1	46
1N4247GP	58	1N5621	43				
1N4248	35	1N5622	42	B125C1500	85	G1A	37
1N4248GP	58	1N5623	43	B125C1500C	86	G1B	37
1N4249	35	1N5624	39	B125C3700/2200	94	G1D	37
1N4249GP	58	1N5624GP	67	B125C5000/3300	95	G1G	37
1N4942	41	1N5625	39	B250C500	82	G1J	37
1N4942GP	72	1N5625GP	67	B250C800	83	G1K	37

Type Page	Туре	Page	Туре	Page	Туре	Page
G1M 37	HVPR10-12	26	KBPC6 10t	99	RG3K	45
	HVPR10-14	26	KBPC8 005	100	RG3M	45
	HVPR15-4	27	KBPC8 02	100	RGP01-10	69
	HVPR20	25	KBPC8 04	100	RGP01-12	69
G2D 38		25	KBPC8 06	100	RGP01-14	69
G2G 38	HVPR30	25 25	KBPC8 08	100	RGP01-16	69
G2J 38	HVPR40	25 25	KBPC8 10	100	RGP10A	73
G2K 38	HVPR50		KBPC10 005	101	RGP10B	73
G2M 38	HVPR60	25	KBPC10 003	101	RGP10D	73
G3A 40	HVPR80	25	KBPC10 02	101	RGP10G	73
G3B 40	KBF005	92	KBPC10 04	101	RGP10J	73
G3D 40	KBF02	92		101	RGP10K	73 73
G3G 40	KBF04	92	KBPC10 08		RGP10M	73 73
G3J 40	KBF06	92	KBPC10 10	101	RGP15A	73 74
G3K 40	KBF08	92	KBPC25 005	102		74
G3M 40	KBF10	92	KBPC25 02	102	RGP15B	74 74
GP10A 59	KBL005	93	KBPC25 04	102	RGP15D	74 74
GP10B 59	KBL02	93	KBPC25 06	102	RGP15G	
GP10D 59	KBL04	93	KBPC25 08	102	RGP15J	74
GP10G 59	KBL06	93	KBPC25 10	102	RGP15K	74
GP10J 59	KBL08	93	KBPC35 005	103	RGP15M	74
GP10K 59	KBL10	93	KBPC35 02	103	RGP30A	75
GP10M 59	KBP005	90	KBPC35 04	103	RGP30B	75
GP15A 63	KBP02	90	KBPC35 06	103	RGP30D	75
GP15B 63	KBP04	90	KBPC35 08	103	RGP30G	75
GP15D 63	KBP06	90	KBPC35 10	103	RGP30J	75
GP15G 63	KBP08	90	P300A	18	RGP30K	75
GP15J 63	KBP10	90	P300B	18	RGP30M	75
GP15K 63	KBPC005	96	P300D	18	W005	88
GP15M 63	KBPC02	96	P300G	18	W02	88
GP20A 66	KBPC04	96	P300J	18	W04	88
GP20B 66	KBPC06	96	P300K	18	W06	88
GP20D 66	KBPC08	96	P300M	18	W08	88
GP20G 66	KBPC10	96	P600A	19	W10	88
GP20J 66	KBPC1 005	97	P600B	19	WL005	87
GP20K 66	KBPC1 02	97	P600D	19	WL02	87
GP20M 66	KBPC1 04	97	P600G	19	WL04	87
GP30A 68	KBPC1 06	97	P600J	19	WL06	87
GP30B 68	KBPC1 08	97	P600K	19	WL08	87
GP30D 68	KBPC1 10	97	RG1A	44	WL10	87
GP30G 68	KBPC6 005	98	RG1B	44	ZGP10-160	77
GP30J 68	KBPC6 02	98	RG1D	44	ZGP10-170	77
GP30K 68	KBPC6 04	98	RG1G	44	ZGP10-180	77
GP30M 68	KBPC6 06	98	RG1J	44	ZGP10-190	77
HVG2 48	KBPC6 08	98	RG1K	44	ZGP10-200	77
HVG3 48	KBPC6 10	98	RG1M	44		
HVG4 48	KBPC6 005t	99	RG3A	45		
HVG5 48	KBPC6 02t	99	RG3B	45		
HVPR10-06 26	KBPC6 04t	99	RG3D	45		
HVPR10-08 26	KBPC6 06t	99	RG3G	45		
HVPR10-10 26	KBPC6 08t	99	RG3J	45		

APPLICATIONS SURVEY

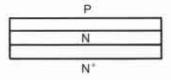
						PLAS	TIC R	ECTIFIE	RS						(
APPLICATION TYPE	(Copyright Copyright Copyr	11/15/400	Pacetoe Practice Practice	Paragraph (Managraph)	By Sala	87509sp	Poons Phoons	Wassel No.	Hyprag	Weelga Myelo	Telling of the second	"NSG17	INSBIA INSBEE	INGGE INGGE ING ING ING	"NEGOSE
Audio Power Amplifier															
Automotive															
Computer Systems															
Controlled Avalanche															
Domestic Appliances															
Fast Switching															
General Purpose															
High Current															
High Mechanical Strength															
High Surge															
High Voltage															
Low Leakage															
Low RFI															
Medical Equipment															
Micro Wave Ovens															
Military Applications															C
Industrial Systems															
Photo Flash															
Power Supplies					F										
Switch Mode Power Supply															
Telecommunication															1
Television Scanning															
TV Clamping, Damping															

_					_				_											
-	SIVATE	D RE	CTIFIE	RS	,		,	,		GLASS PASSIVATED PLASTIC RECTIFIER										
0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24								IMMODIGE IMM	ADECOMO POR CONTRACTOR OF THE PROPERTY OF THE	INSERTOR INSERTOR	Bright Bright	Bridge Bu	Gerton Sprion Sprion		September 1	Robot-10 Rob	Righton Hone	Right SA	Rain Sup.	AGP15-200
I																				
																			ī	
			П							di.										
	Ш																			
																			1	
	17/1 mg	E1 - 61																	13-0	
	Ш	Ш	L											Ш						
			- 12																	
								_		1000		-	_	ч	_	_	_		L	
								_								니				
			-	_							_						_		100	
				H				_			니						님	님	님	
					-			-			=					920				
					L.J			land.			Ы					L_I	l-d		اسا	

1 to 25 Amperes

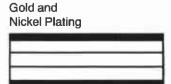
50 V to 15000 V

Principle of Construction

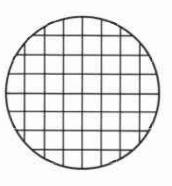

General Instrument has produced successfully for many years Plastic Rectifiers. The key factor of our 1 Amp Plastic Rectifier is the use of the cell concept.

The small size and absence of leads allows many cells to be processed simultaneously in batch form.

This method ensures accurate pretesting of the cells before final assembly, and allows General Instrument to produce high volume of 1 Amp Rectifiers economically.


The cell construction consists of the following steps:

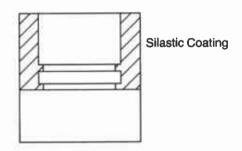
1 - Diffusing a PN junction into a silce of silicon.


Diffused Slice

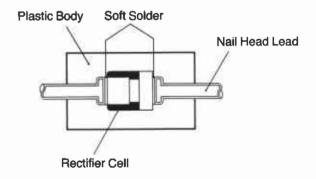
2 - Metallizing the slice of silicon.

Metallized Slice

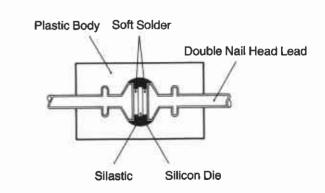
3 - Scribing and breaking the slice into individual dies.



Scribed Wafer


- 4 Soldering the die between two heat sinks.
- Solder Preform
 Solder Preform
 Metallized Die

Soldering die between Heat Sinks


- 5 Cleaning the assembly by chemical etching, washing and drying.
- 6 Passivating the finished cell with silastic.

Silastic Coated Cell

Cell Constructed Plastic Rectifler

Double Nall Head Plastic Rectifier

- 7 In addition to the cell-construction for high current rectifiers the double nail head construction is used. In this construction the cell is soldered, between two nail headed leads and overmolding with an expoxy body.
- 8 The double nail head construction is used for high current plastic rectifiers.

Miniature Plastic Silicon Rectifiers 1 AMP

Type: 1N4001 thru 1N4007

Features:

- Low Cost
- Diffused Junction
- Low Leakage
- High Current Capability
- Easily Cleaned with Freon, Alcohol, Chlorothene and similar Solvents
- Silver Plated Axial Leads, Solderable per MIL-STD-202/208
- Case: Jedec DO 41

Plastic Power Rectifiers 1.2 to 5 AMP

Types: 1N5400 thru 1N5408

P300A thru P300M BY251P thru BY255P

BY296P thru BY299P (Fast Recovery) BY500-100 thru BY500-800 (Fast Recovery)

BYX55-350P and BYX55-600P

Features:

- High Surge Current Capability
- Void-Free Plastic DO 27A Package
- High Current Operation
- Typical I_R less than 1 μA (1N5400, P300)
- Exceeds Environmental Standards of MIL-STD-19500/228
- High Temperature Soldering Guaranteed 350°C/10 Seconds/10 mm Lead Length at 2,25 kg Tension
- Controlled Soft Recovery guarantees low RFI and high Efficiency Switching Characteristics of BY296P thru BY299P and BY500-100 thru BY500-800.
- Silver Plated Axial Leads, Solderable per MIL-STD-202/208

High Current Plastic Silicon Rectifiers 6 to 25 AMP

Types: AR25A thru AR25M P600A thru P600K

Features:

- High Current Lead Mounted (P600)
- Diffused Junction
- High Surge Current: 400 Ampere at Tj = 175°C
- Low Leakage
- Tinned Copper Leads (P600)
- Silver Plated Copper (AR25)

High Voltage Plastic Rectifiers

Types: 1N1730 A thru 1N1734A

HVPR20 thru HVPR80 HVPR15-9 thru HVPR15-15 HVPR10-06 thru HVPR10-14

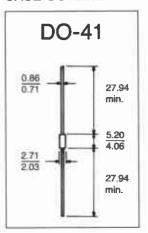
Features:

- Diffused Junction
- Low Forward Voltage Drop
- High Forward Overload Surge Rating
- Avalanche Operation
- Ideal for Magnetron Power Supply in Micro Wave Ovens.

QUICK GUIDE TO PLASTIC RECTIFIERS

TYPE	1N4001 thru 1N4007	BYX55-350P* and BYX55-600P*	BY296P* thru BY299P*	BY500-100* thru BY500-800*	BY251P thru BY255P	1N5400 thru 1N5408	P300A thru P300M	P600A thru P600M	AR25A thru AR25M
CASE	DO41	DO27A	DO27A	DO27C	DO27A	DO27A	DO27A	P600	AR25
I _o (A)	1.0	1.2	2.0	5.0	3.0	3.0	3.0	6.0	25
@T _A (°C)	75	55	55	45	75	105	105	60	150 T c
V _R = 50 (V)	1N4001					1N5400	P300A	P600A	AR25A
V _R = 100 (V)	1N4002		BY296P	BY500-100		1N5401	P300B	P600B	AR25B
V _R = 200 (V)	1N4003		BY297P	B4500-200	BY251P	1N5402	P300D	P600D	AR25D
V _R = 300 (V)						1N5403			
V _R = 400 (V)	1N4004	BYX55-350P	BY298P	BY500-400	BY252P	1N5404	P300G	P600G	AR25G
V _R = 500 (V)						1N5405			
V _R = 600 (V)	1N4005			BY500-600	BY253P	1N5406	P300J	P600J	AR25J
V _R = 800 (V)	1N4006	BYX55-600P	BY299P	BY500-800	BY254P	1N5407	P300K	P600K	AR25K
V _R = 1000 (V)	1N4007					1N5408	P300M		
V _R > 1000 (V)					BY255P				
SURGE (A)	30	40	70	200	100	200	200	400	400
V _F (V)	1.1	1.25	1.3	1.25	1.1	1.2	1.1	1.25	1.0
Page	15	21	22	23	17	16	18	19	20

					* Fast Reco
		QUICK G	UIDE TO HV PLASTI	C RECTIFIERS	
	1N1730A	HVPR20		HVPR10-06	
TYPE	thru 1N1734A	thru HVPR80	HVPR15	thru HVPR10-14	TYPE
I _o (A)	0.35				I _o (A)
@T _A (°C)	25				@T _A (°C)
SURGE (A)	6				SURGE (A)
V _R = 1000 (V)	1N1730A				V _R = 1000 (\
V _R = 1500 (V)	1N1731A				V _R = 1500 (\
V _R = 2000 (V)	1N1732A	HVPR20			V _R = 2000 (V
V _R = 3000 (V)	1N1733A	HVPR30			V ₈ = 3000 (\
V _R = 4000 (V)		HVPR40			V _R = 4000 (\
V _R = 5000 (V)	1N1734A	HVPR50			V _R = 5000 (V
V _R = 6000 (V)		HVPR60		HVPR10-06	V _R = 6000 (\
V _R = 8000 (V)		HVPR80	HVPR15-9	HVPR10-08	V _R = 8000 (\
V _R = 10000 (V)			HVPR15-11	HVPR10-10	V _R = 10000 (\
V _R = 12000 (V)			HVPR15-13	HVPR10-12	V _R = 12000 (\
V _R = 14000 (V)				HVPR10-14	V _R = 14000 (\
V _R = 15000 (V)			HVPR15-15		V _R = 15000 (\
Page	24	25	27	26	Page


50 to 1000 V

1N4001 thru 1N4007

VOLTAGE RATINGS

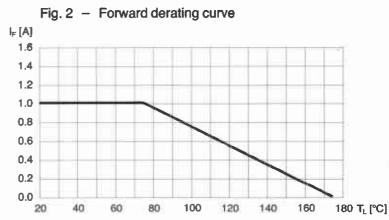
Туре	Maximum RMS Voltage	Maximum Recurrent Peak Reverse Voltage
1N4001	35 V	50 V
1N4002	70 V	100 V
1N4003	140 V	200 V
1N4004	280 V	400 V
1N4005	420 V	600 V
1N4006	560 V	800 V
1N4007	700 V	1000 V

CASE OUTLINE

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature and 10 mm lead length unless otherwise specified. Single-phase, half-wave, 50 Hz, resistive or inductive load.

Maximum Average Forward Rectified Current	1.0 A
Peak Forward Surge Current, 10 ms Single Half Sine Wave	30 A
Maximum Forward Voltage at 1.0 A _{DC}	1.1 V
Maximum Reverse Current at 25°C	5.0 μA
Maximum Reverse Current at 75°C	50.0 μΑ
Typical Reverse Recovery Time - Measured with I _F = 20 mA, i _{rr} = 1 mA	20 μs
Typical Junction Capacitance at 1.0 MHz and Reverse Voltage of 4.0 V _{DC}	30 pF
Typical Thermal Resistance	50°C/W
Operating Temperature Range	−65 to +175°C
Storage Temperature Range	-65 to +175°C

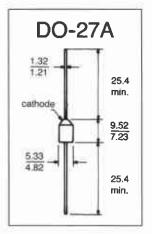

Fig. 1 — Typical forward characteristic

1.00

0.10

0.01

0.02 0.4 0.6 0.8 1.0 1.2 1.4 V_F[V]


50 to 1000 V

1N5400 thru 1N5408

VOLTAGE RATINGS

Туре	Maximum RMS Voltage	Maximum Recurrent Peak Reverse Voltage
1N5400	35 V	50 V
1N5401	70 V	100 V
1N5402	140 V	200 V
1N5403	210 V	300 V
1N5404	280 V	400 V
1N5405	350 V	500 V
1N5406	420 V	600 V
1N5407	560 V	800 V
1N5408	700 V	1000 V

CASE OUTLINE

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature and 10 mm lead length unless otherwise specified. Single-phase, half-wave, 50 Hz, resistive or inductive load.

Maximum Average Forward Rectified Current at 105°C	3.0 A
Peak Forward Surge Current, 10 ms Single Half Sine Wave	200 A
Maximum Forward Voltage at 3.0 A _{DC}	1.2 V
Maximum Reverse Current at 25°C	5.0 μ A
Maximum Reverse Current at 105°C	500 μΑ
Typical Reverse Recovery Time $-$ Measured with $I_F=0.5A,\ I_R=1.0A,\ i_{rr}=0.25A$	5 μ s
Typical Junction Capacitance at 1.0 MHz and Reverse Voltage of 4.0 V _{DC}	60 pF
Typical Thermal Resistance	25°C/W
Operating Temperature Range	-65 to +170°C
Storage Temperature Range	-65 to +175°C

Fig. 1 — Typical forward characteristic

I_F [A]

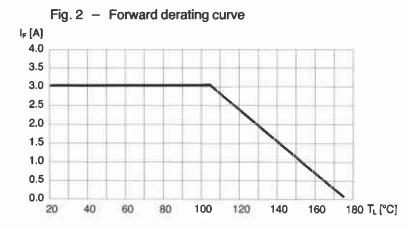
1.00

0.10

0.01

0.02

0.4

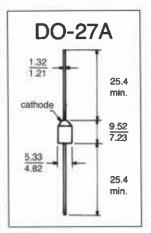

0.6

0.8

1.0

1.2

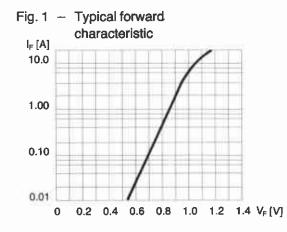
1.4 V_F [V]

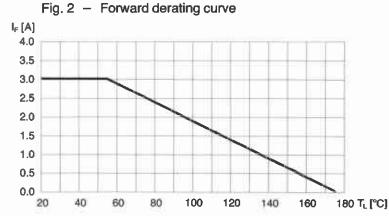

200 to 1300 V

BY251P thru BY255P

VOLTAGE RATINGS

Туре	Maximum RMS Voltage	Maximum Recurrent Peak Reverse Voltage
BY251P	140 V	200 V
BY252P	280 V	400 V
BY253P	420 V	600 V
BY254P	560 V	800 V
BY255P	910 V	1300 V

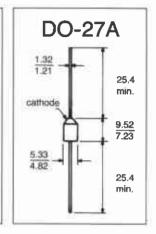

CASE OUTLINE



MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature and 10 mm lead length unless otherwise specified. Single-phase, half-wave, 50 Hz, resistive or inductive load.

Maximum Average Forward Rectified Current	3.0 A
Peak Forward Surge Current, 10 ms Single Half Sine Wave	100 A
Maximum Forward Voltage at 3.0 A _{DC}	1.1 V
Maximum Reverse Current at 25°C	5.0 μΑ
Maximum Reverse Current at 55°C	100 μΑ
Typical Reverse Recovery Time $-$ Measured with $I_F=0.5A,\ I_R=1.0A,\ i_{rr}=0.25A$	3 μs
Typical Junction Capacitance at 1.0 MHz and Reverse Voltage of 4.0 V _{DC}	60 pF
Typical Thermal Resistance	25°C/W
Operating Temperature Range	-65 to +175°C
Storage Temperature Range	-65 to +175°C


500 to 1000 V

P300 Series

VOLTAGE RATINGS

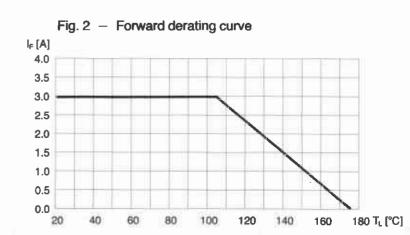
CASE OUTLINE

Туре	Maximum RMS Voltage	Maximum Recurrent Peak Reverse Voltage
P300A	35 V	50 V
P300B	70 V	100 V
P300D	140 V	200 V
P300G	280 V	400 V
P300J	420 V	600 V
P300K	560 V	800 V
P300M	700 V	1000 V

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature and 10 mm lead length unless otherwise specified. Single-phase, half-wave, 50 Hz, resistive or inductive load.

Maximum Average Forward Rectified Current	3.0 A
Peak Forward Surge Current, 10 ms Single Half Sine Wave	200 A
Maximum Forward Voltage at 9.4 A _{DC}	1.1 V
Maximum Reverse Current at 25°C	5.0 μΑ
Maximum Reverse Current at 100°C	25.0 μΑ
Typical Reverse Recovery Time $-$ Measured with $I_F=0.5A,\ I_R=1.0A,\ i_{rr}=0.25A$	5.0 μs
Typical Junction Capacitance at 1.0 MHz and Reverse Voltage of 4.0 V _{DC}	50.0 pF
Typical Thermal Resistance	25°C/W
Operating Temperature Range	-65 to +175°C
Storage Temperature Range	-65 to +175°C

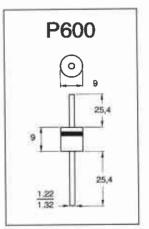

Fig. 1 — Typical forward characteristic

1_F[A]
10.0

0.10

0.01

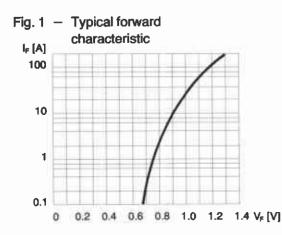
0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 V_F[V]

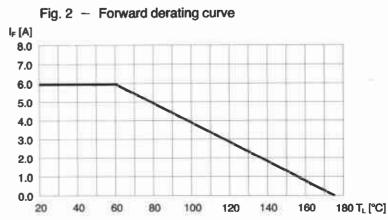

50 to 800 V

P600 Series

VOLTAGE RATINGS

Туре	Maximum RMS Voltage	Maximum Recurrent Peak Reverse Voltage
P600A	35 V	50 V
P600B	70 V	100 V
P600D	140 V	200 V
P600G	280 V	400 V
P600J	420 V	600 V
P600K	560 V	800 V


CASE OUTLINE

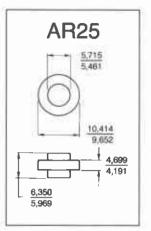


MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature and 10 mm lead length unless otherwise specified. Single-phase, half-wave, 50 Hz, resistive or inductive load.

Maximum Average Forward Rectified Current	6 A
Peak Forward Surge Current, 10 ms Single Half Sine Wave	400 A
Maximum Forward Voltage at 6.0 A _{DC}	0.9 V
Maximum Reverse Current at 25°C	25 µA
Maximum Reverse Current at 100°C	100 μΑ
Typical Reverse Recovery Time – Measured with $I_F = 0.5$ A, $I_R = 1.0$ A, $I_{\pi} = 0.25$ A	5 μ s
Typical Junction Capacitance at 1.0 MHz and Reverse Voltage of 4.0 V _{DC}	220 pF
Typical Thermal Resistance	10°C/W
Operating Temperature Range	-65 to +170°C
Storage Temperature Range	-65 to +175°C

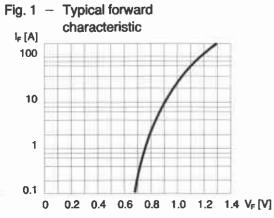
25 A Button Rectifier

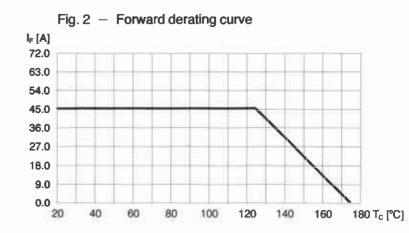

50 to 1000 V

AR25 Series

VOLTAGE RATINGS

Туре	Maximum RMS Voltage	Maximum Recurrent Peak Reverse Voltage
AR25A	35 V	50 V
AR25B	70 V	100 V
AR25D	140 V	200 V
AR25G	280 V	400 V
AR25J	420 V	600 V
AR25K	560 V	800 V
AR25M	700 V	1000 V

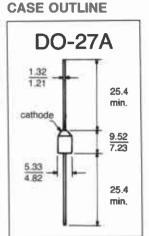

CASE OUTLINE



MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature and 10 mm lead length unless otherwise specified. Single-phase, half-wave, 50 Hz, resistive or inductive load.

Maximum Average Forward Rectified Current	25 A
Peak Forward Surge Current, 10 ms Single Half Sine Wave	400 A
Maximum Forward Voltage at 25 A _{DC}	1.0 V
Maximum Reverse Current at 25°C	25.0 μΑ
Maximum Reverse Current at 100°C	250 μΑ
Typical Reverse Recovery Time $-$ Measured with $I_F=0.5$ A, $I_R=1.0$ A, $I_{rr}=0.25$ A	5 μs
Typical Junction Capacitance at 1.0 MHz and Reverse Voltage of 4.0 V _{DC}	300 pF
Typical Thermal Resistance	2.5°C/W
Operating Temperature Range	-65 to +175°C
Storage Temperature Range	-65 to +175°C

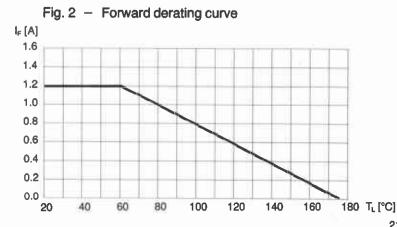


350 and 600 V / Fast Recovery

BYX55P

VOLTAGE RATINGS

Maximum Recurrent Type Peak Reverse Voltage 350 V BYX55-350P 600 V BYX55-600P

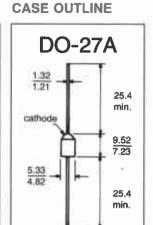


MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature and 10 mm lead length unless otherwise specified. Single-phase, half-wave, 50 Hz, resistive or inductive load.

Maximum Average Forward Rectified Current	1.2 A
Peak Forward Surge Current, 10 ms Single Half Sine Wave	40 A
Maximum Forward Voltage at 5.0 A _{DC}	1.25 V
Maximum Reverse Current at 25°C	5 μΑ
Maximum Reverse Current at 100°C	200 μΑ
Maximum Reverse Recovery Time – Measured with $I_F = 1.0$ A, $V_R = 50$ V	750 n
Typical Junction Capacitance at 1.0 MHz and Reverse Voltage of 4.0 V _{DC}	30 pF
Typical Thermal Resistance	25°C/W
Operating Temperature Range	-65 to +175°C
Storage Temperature Range	−65 to +175°C

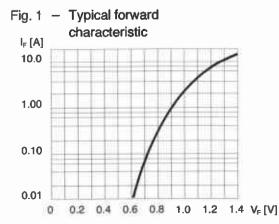
Fig. 1 - Typical forward characteristic I_F [A] 10.0 1.00 0.10 0.01 0.2 0.4 0.6 0.8 1.0 1.2 1.4 V_F[V]

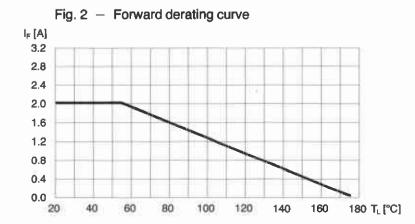


100 to 800 V / Fast Recovery

BY296P thru BY299P

VOLTAGE RATINGS


Type Maximum Recurrent Peak Reverse Voltage BY296P 100 V BY297P 200 V BY298P 400 V BY299P 800 V

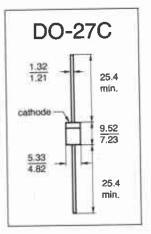


MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature and 10 mm lead length unless otherwise specified. Single-phase, half-wave, 50 Hz, resistive or inductive load.

Maximum Average Forward Rectified Current	2.0 A
Peak Forward Surge Current, 10 ms Single Half Sine Wave	70 A
Maximum Forward Voltage at 3.0 A _{DC}	1.3 V
Maximum Reverse Current at 25°C	10 μΑ
Maximum Reverse Current at 100°C	200 μΑ
Maximum Reverse Recovery Time $-$ Measured with $I_F=0.5$ A, $I_R=1.0$ A, $I_{rr}=0.25$ A	500 ns
Typical Junction Capacitance at 1.0 MHz and Reverse Voltage of 4.0 V_{DC}	40 pF
Typical Thermal Resistance	25°C/W
Operating Temperature Range	-65 to +150°C
Storage Temperature Range	-65 to +175°C

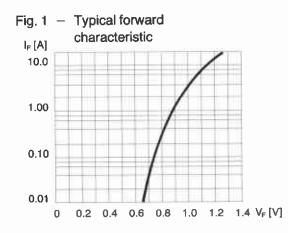
100 to 800 V / Soft Recovery

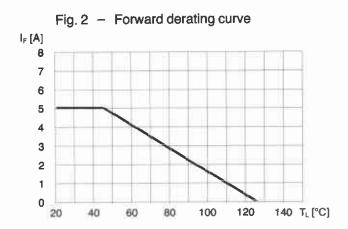

BY500 Series

HIGH EFFICIENCY LOW NOISE SWITCHING RECTIFIER

Туре	Maximum RMS Voltage	Maximum Recurrent Peak Reverse Voltage
BY500-100	70 V	100 V
BY500-200	140 V	200 V
BY500-400	280 V	400 V
BY500-600	420 V	600 V
BY500-800	560 V	800 V

Especially designed for applications such as Switch Mode Power Supplies, Inverters, Converters, Choppers, TV Scanning, Ultrasonic-Systems, speed controlled DC Motors, low RF Interference and free Wheeling Rectifiers.

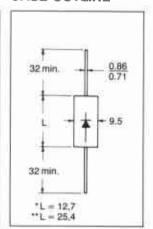

CASE OUTLINE



MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature and 10 mm lead length unless otherwise specified. Single-phase, half-wave, 50 Hz, resistive or inductive load.

Maximum Average Forward Rectified Current	5 A
Peak Forward Surge Current, 10 ms Single Half Sine Wave	200 A
Maximum Forward Voltage at 3.0 A _{DC}	1.25 V
Maximum Reverse Current at 25°C	10 μΑ
Maximum Reverse Current at 100°C	1 mA
Typical Reverse Recovery Time – Measured with I _F = 1 A, V _R = 30 V	200 ns
Typical Junction Capacitance at 1.0 MHz and Reverse Voltage of 12.0 V _{DC}	30 pF
Typical Thermal Resistance	25°C/W
Operating Temperature Range	−65 to +125°C
Storage Temperature Range	−65 to +150°C

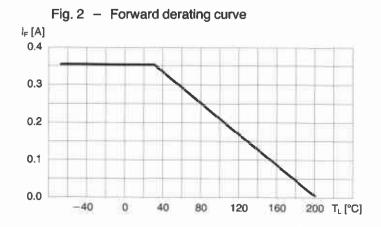

1000 to 5000 V

1N1730A thru 1N1734A

VOLTAGE RATINGS

Туре	Maximum Forward	Maximum Recurrent
	Voltage at 0.4 A _{DC}	Peak Reverse Voltage
1N1730A*	3.0 V	1000 V
1N1731A*	3.0 V	1500 V
1N1732A**	3.0 V	2000 V
1N1733A**	6.0 V	3000 V
1N1734A**	8.0 V	5000 V

CASE OUTLINE

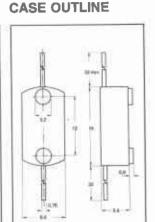


MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature and 10 mm lead length unless otherwise specified. Single-phase, half-wave, 50 Hz, resistive or inductive load.

Maximum Average Forward Rectified Current at 25°C	0.35 A
Maximum Average Forward Rectified Current at 100°C	0.2 A
Maximum Average Forward Rectified Current at 175°C	0.05 A
Peak Forward Surge Current, 10 ms Single Half Sine Wave	6.0 A
Maximum Reverse Current at 25°C	1.0 μΑ
Maximum Reverse Current at 150°C	12.0 μ A
Operating Temperature Range	-65 to +200°C
Storage Temperature Range	-65 to +200°C

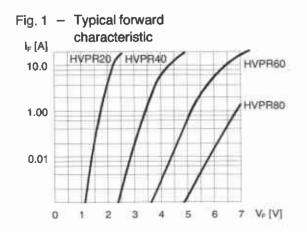
Fig. 1 - Typical forward characteristic $l_{F}[A]$ 10.0 1N1730A 1N1733A 1N1734A 1.00 0.10 0.01 7 3 4 5 6 8 9 V_F [V]

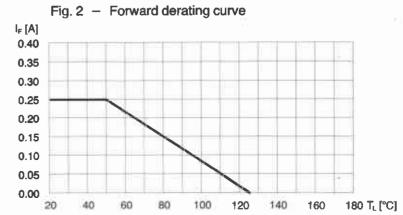


2000 to 8000 V

HVPR Series

VOLTAGE RATINGS

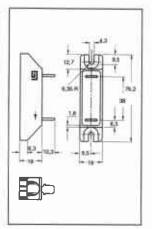

Type Maximum Recurrent Peak Reverse Voltage HVPR20 2000 V HVPR30 3000 V HVPR40 4000 V HVPR50 5000 V HVPR60 6000 V HVPR80 8000 V



MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature and 10 mm lead length unless otherwise specified. Single-phase, half-wave, 50 Hz, resistive or inductive load.

Maximum Average Forward Rectified Current	0.25 A
Peak Forward Surge Current, 10 ms Single Half Sine Wave	30 A
Maximum Forward Voltage at 0.25 A _{DC}	8 V
Maximum Reverse Current at 25°C	10 μΑ
Maximum Reverse Current at 125°C	100 μΑ
Typical Junction Capacitance at 1.0 MHz and Reverse Voltage of 100 V_{DC}	5 pF
Typical Thermal Resistance	35 °C/W
Operating Temperature Range	-40 to +125°C
Storage Temperature Range	−50 to +150°C


6000 to 14000 V

HVPR10 Series

VOLTAGE RATINGS

Туре	Maximum Recurrent
.,,,,,	Peak Reverse Voltage
HVPR10-06	6000 V
HVPR10-08	8000 V
HVPR10-10	10000 V
HVPR10-12	12000 V
HVPR10-14	14000 V


CASE OUTLINE

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS
Ratings at 25°C ambient temperature and 10 mm lead length unless otherwise specified. Single-phase, half-wave, 50 Hz, resistive or inductive load.

Maximum Average Forward Rectified Current	0.75 A
Peak Forward Surge Current, 10 ms Single Half Sine Wave	250 A
Maximum Forward Voltage at 0.75 A _{DC}	14 V
Maximum Reverse Current at 25°C	5 μΑ
Operating Temperature Range	−20 to +125°C
Storage Temperature Range	-20 to +125°C

Fig. 1 - Typical forward characteristic I_F [A] 10.0 1.00 0.10 0.01 ø 2 6 8 10 12 14 V_F[V]

9000 to 15000 V

HVPR15

CASE OUTLINE

VOLTAGE RATINGS

Type Maximum Recurrent Peak Reverse Voltage

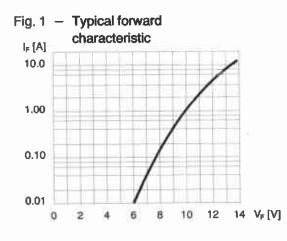
HVPR15- 9

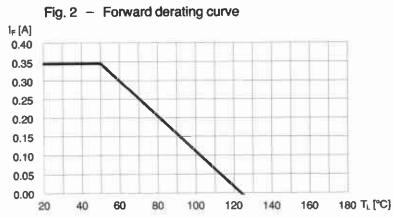
HVPR15-11

11000 V

HVPR15-13

13000 V


HVPR15-15



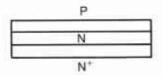
MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature and 10 mm lead length unless otherwise specified. Single-phase, half-wave, 50 Hz, resistive or inductive load.

Maximum Average Forward Rectified Current	0.35 A
Peak Forward Surge Current, 10 ms Single Half Sine Wave	50 A
Maximum Forward Voltage at 0.35 A _{DC}	13.5 V
Maximum Reverse Current at 25°C	" 1 μΑ
Operating Temperature Range	-20 to +125°C
Storage Temperature Range	-20 to +125°C

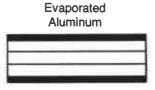
0.4 to 3 Amperes

50 V to 5000 V

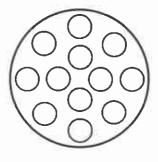

Device Design

The Glass-Amp II is a hermetically sealed, cavity-free, diffused junction rectifier with unsurpassed operating and surge characteristics at high temperature.

Cavity-free construction with a specially developed extremely pure glass in direct contact with the silicon junction plus durable heat sink design obviate the need for solder joints and compression contact parts. The carefully matched expansion characteristics of the glass and metal parts in combination with the direct contact of the glass and silicon junction make the active rectifying elements impervious to surface contamination, moisture or other external chemical agents. Further, the long term degradation associated with organic junction protection is avoided.


There are many steps necessary to produce such a device:

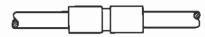
1 - Diffuse a PN junction into a silce of silicon


Diffused Slice

 Evaporate aluminium on both sides of the slice to make metallurgical contact

Metallized Slice

3 - Sandblast the slice to produce a round beveled die

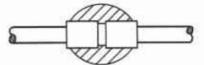


Sandblasted Round Dice

4 — Braze the die between two molybdenum heat sinks to which leads have been attached at approximately 700°C.

Molybdenum Heat Sinks

Copper Lead



Copper Lead

Brazed cell

Glass Passivated Rectifier

- 5 Clean the assembly by chemically etching, washing and drying.
- 6 Apply glass in the form of a frit to the die and molybdenum assembly.
- 7 Melt the glass by heating in an oven to approximately 600°C:

Glass Passivated Rectifier

8 — Perform finishing operations such as lead tinning, electrical testing and marking.

Package Design

The small size of the glass package with its capability up to 3 Ampere permits greater packing densities in electronic assemblies and equipment, while increasing reliability. Furthermore, only high temperature brazing operations are used to withstand the 600°C required to melt and fuse the glass. This technique eliminates solder construction and tremendously enhances mechanical strength and temperature cycling capability, increasing operating and storage temperature range while reducing thermal resistance.

Reliability

Specified reliability data on Glass-Amp II devices are available from the General Instrument Semiconductor Components Division Reliability Department. The basic design of the Glass-Amp II rectifier and the strict positive controls over materials and manufacturing processes provide assurance of failure-free performance under the most severe conditions. Processing facilities have been geared to follow the procedural requirements of Military Standard 750. Glass-Amp II rectifiers are capable of withstanding environmental extremes in excess of MIL-S-19500/286 and of meeting the requirements of MIL-S-19500E, MIL-STD-883, MIL-Q-9858 and MIL-I-45208. Assurance of production uniformity and reliability is provided by a test technique called "Operational Load Line Testing", which has proven product reliability with over 1 Billion Glass-Amp rectifiers now in use.

Glass Passivated Silicon Diodes 0.4 AMP

Type: 1N645 thru 1N649

Features:

- High Temperature Metallurgically Bonded
- High Efficiency and Rectification Ratio
- Ideally Suited for Miniaturized Equipment
- Case: One Piece Glass, Hermetically Sealed
- Tin Plated Axial Leads, Solderable per MIL-STD-202/208
- Operating from -65°C to +175°C
- Low Leakage

Glass Passivated Silicon Rectifiers 1 to 3 AMP

Types: 1N3611 thru 1N3614

1N4245 thru 1N4249 1N5059 thru 1N5062 1N5624 thru 1N5627 G1A thru G1M G2A thru G2M G3A thru G3M

Features:

- Glass Passivated Junction
- High Mechanical Strength
- Storage up to 200°C
- Voidless Construction
- Hermetically Sealed
- Avalanche Operation
- Low Leakage
- High Conductance
- Tin Plated Axial Leads, Solderable per MIL-STD-202/208

Glass Passivated Fast Recovery Silicon Rectifiers 1 to 3 AMP

Types: 1N4942 thru 1N4948

1N5614 thru 1N5622 1N5615 thru 1N5623 RG1A thru RG1M RG3A thru RG3M

Features:

- Glass Passivated Junction
- High Rectification Efficiency to 100 kHz
- High Mechanical Strength
- Low Leakage
- Hermetically Sealed
- Storage up to 200°C
- Tin Plated Axial Leads, Solderable per MIL-STD-202/208

Glass Passivated High Voltage Silicon Rectifiers 0.15 to 1.5 AMP

Types: CG1, DG1

HVG-2 thru HVG-5

BY228

Features:

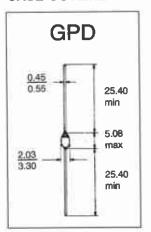
- All Advantages of a Hermetically Sealed Glass Passivated Junction
- Especially designed for Clamper/Damper Applications in Television Circuits
- Low Leakage
- High Mechanical Strength
- Tin Plated Axial Leads, Solderable per MIL-STD-202/208

QUICK GUIDE TO GLASS PASSIVATED RECTIFIERS

1N645 thru 1N649	1N3611 thru 1N3614	1N4245 thru 1N4249	1N4942* thru 1N4948*	RG 1 A* thru RG 1 M*	1N5059 thru 1N5062	1N5614 thru 1N5622	1N5615* thru 1N5623*	TYPE
GPD	GPR	GPR	GPR	GPR	GPR	GPR	GPR	CASE
0.4	1.0	1.0	1.0	1.0	1.0	1.0	1.0	I _o (A)
25	100	55	55	55	55	55	55	@T _A (°C)
				RG 1 A				V _R = 50 (V)
				RG 1 B				V _R = 100 (V)
1N645	1N3611	1N4245	1N4942	RG 1 D	1N5059	1N5614	1N5615	V _R = 200 (V)
1N646			1N4943					V _R = 300 (V)
1N647	1N3612	1N4246	1N4944	RG 1 G	1N5060	1N5616	1N5617	V _R = 400 (V)
1N648			1N4945					V _R = 500 (V)
1N649	1N3613	1N4247	1N4946	RG1J	1N5061	1N5618	1N5619	V _R = 600 (V)
	1N3614	1N4248	1N4947	RG 1 K	1N5062	1N5620	1N5621	V _R = 800 (V)
		1N4249	1N4948	RG 1 M		1N5622	1N5623	V _R = 1000 (V)
								V _R > 1000 (V)
5	20	25	30	30	50	50	50	SURGE (A)
1.0	1.1	1.2	1.3	1.3	1.2	1.2	1,2	V _F (V)
33					36	42	43	Page
	thru 1N649 GPD 0.4 25 1N645 1N646 1N647 1N648 1N649	thru 1N649 thru 1N3614 GPD GPR 0.4 1.0 25 100 1N645 1N3611 1N646 1N647 1N3612 1N648 1N649 1N3613 1N3614 5 20 1.0 1.1	thru 1N649 thru 1N3614 thru 1N4249 GPD GPR GPR 0.4 1.0 1.0 25 100 55 1N645 1N3611 1N4245 1N646 1N647 1N3612 1N4246 1N648 1N649 1N3613 1N4247 1N3614 1N4248 5 20 25 1.0 1.1 1.2	thru 1N649	thru 1N649	thru thru <th< td=""><td>thru 1N649</td><td>thru 1N649</td></th<>	thru 1N649	thru 1N649

TYPE	G1A thru G1M	CG 1 and DG 1	BY228	G 2 A thru G 2 M	RG 3 A* thru RG 3 M*	G3A thru G3M	1N5624 thru 1N5627	TYPE
CASE	GPR	GPR	GPR3	GPR	GPR 3	GPR 3	GPR 3	CASE
I _o (A)	1.0	1.5	2.5	2.0	3.0	3.0	3.0	I _o (A)
@T _A (°C)	100	55	55	75	55	70	70	@T _A (°C)
V _R = 50 (V)	G1A			G2A	RG 3 A	G3A		V _R = 50 (V
V _R = 100 (V)	G1B			G2B	RG 3 B	G3B		V _R = 100 (V
V _R = 200 (V)	G1D			G2D	RG 3 D	G3D	1N5624	V _R = 200 (V
V _R = 300 (V)							,	V _R = 300 (V)
V _R = 400 (V)	G1G			G2G	RG3G	G3G	1N5625	V _R = 400 (V
V _R = 500 (V)								V _R = 500 (V
V _R = 600 (V)	G1J			G2J	RG 3 J	G3J	1N5626	V _R = 600 (V
V _R = 800 (V)	G1K			G 2 K	RG 3 K	GЗК	1N5627	V _R = 800 (V)
V _R = 1000 (V)	G1M			G 2 M	RG 3 M	G3M		V _R = 1000 (V)
V _R > 1000 (V)		CG 1/DG 1	BY228					V _R > 1000 (V)
SURGE (A)	50	50	100	50	100	125	125	SURGE (A)
V _F (V)	1.1	1.0	1.3	1,1	1.3	1.1	1.0	V _F (V)
Page	37	46	47	38	45	40	39	Page

0.4 A Glass Diode


225 to 600 V

1N645 thru 1N649

VOLTAGE RATINGS

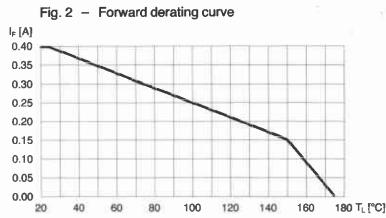
Type Maximum Recurrent Peak Reverse Voltage 1N645 225 V 1N646 300 V 1N647 400 V 1N648 500 V 1N649 600 V

CASE OUTLINE

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature and 10 mm lead length unless otherwise specified. Single-phase, half-wave, 50 Hz, resistive or inductive load.

Maximum Average Forward Rectified Current	400 mA
Peak Forward Surge Current, 10 ms Single Half Sine Wave	5 A
Maximum Forward Voltage at 0.4 A _{DC}	1.0 V
Maximum Reverse Current at 25°C	0.2 μΑ
Maximum Reverse Current at 100°C	15 μΑ
Maximum Reverse Recovery Time – Measured with $l_F = 20$ mA, $i_{rr} = 1$ mA	20 µs
Typical Junction Capacitance at 1.0 MHz and Reverse Voltage of 4.0 V _{DC}	15 pF
Typical Thermal Resistance	100°C/W
Operating Temperature Range	-65 to +175°C
Storage Temperature Range	−65 to +200°C

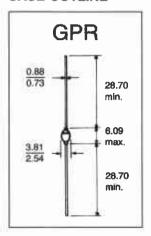

Fig. 1 — Typical forward characteristic

0.1

0.01

0.001

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 V_F[V]


200 to 800 V

1N3611 thru 1N3614

VOLTAGE RATINGS

CASE OUTLINE

Туре	Maximum RMS Voltage	Maximum Recurrent Peak Reverse Voltage
1N3611	140 V	200 V
1N3612	280 V	400 V
1N3613	420 V	600 V
1N3614	560 V	800 V

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature and 10 mm lead length unless otherwise specified. Single-phase, half-wave, 50 Hz, resistive or inductive load.

Maximum Average Forward Rectified Current @100°C	1 A
Peak Forward Surge Current, 10 ms Single Half Sine Wave	30 A
Maximum Forward Voltage at 2.0 A _{DC}	1.1 V
Maximum Reverse Current at 25°C	1.0 μΑ
Maximum Reverse Current at 150°C	300 μΑ
Maximum Reverse Recovery Time $-$ Measured with $I_F=20$ A, $i_\pi=1$ mA	20 μ s
Typical Junction Capacitance at 1.0 MHz and Reverse Voltage of 4.0 V _{DC}	15 p F
Typical Thermal Resistance	50°C/W
Operating Temperature Range	-65 to +175°C
Storage Temperature Range	-65 to +300°C

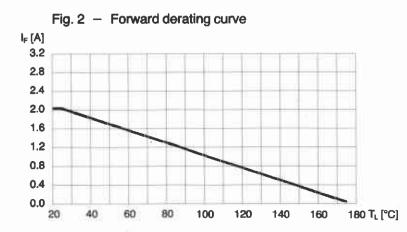
Fig. 1 — Typical forward characteristic

1.00

1.00

0.10

0.02

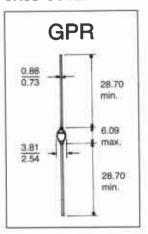

0.4

0.6

0.8

1.0

1.4 V_F[V]


200 to 1000 V

1N4245 thru 1N4249

VOLTAGE RATINGS

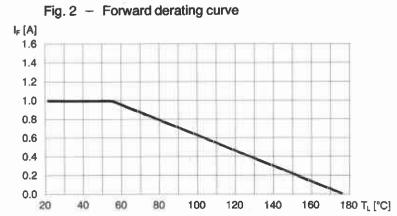
Туре	Maximum RMS Voltage	Maximum Recurrent Peak Reverse Voltage
1N4245	140 V	200 V
1N4246	280 V	400 V
1N4247	420 V	600 V
1N4248	560 V	800 V
1N4249	700 V	1000 V

CASE OUTLINE

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature and 10 mm lead length unless otherwise specified. Single-phase, half-wave, 50 Hz, resistive or inductive load.

Maximum Average Forward Rectified Current	1 A
Peak Forward Surge Current, 10 ms Single Half Sine Wave	25 A
Maximum Forward Voltage at 1.0 A _{DC}	1.2 V
Maximum Reverse Current at 25°C	1.0 μΑ
Maximum Reverse Current at 125°C	25 μ A
Typical Reverse Recovery Time – Measured with $I_F=0.5A,\ I_B=1.0A,\ i_{rr}=0.25A$	2 μs
Typical Junction Capacitance at 1.0 MHz and Reverse Voltage of 4.0 V _{DC}	15 pF
Typical Thermal Resistance	50°C/W
Operating Temperature Range	-65 to +160°C
Storage Temperature Range	-65 to +200°C


Fig. 1 — Typical forward characteristic

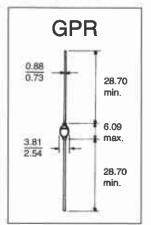
1.00

1.00

0.10

0.02 0.4 0.6 0.8 1.0 1.2 1.4 V_F[V]

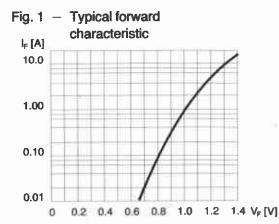
200 to 800 V

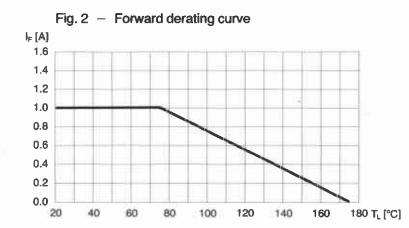

1N5059 thru 1N5062

CASE OUTLINE

VOLTAGE RATINGS

Maximum RMS Voltage Maximum Recurrent Peak Reverse Voltage

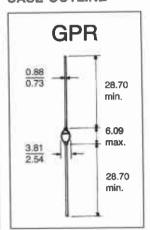

Type 1N5059 140 V 200 V 1N5060 280 V 400 V 1N5061 420 V 600 V 1N5062 560 V 800 V



MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature and 10 mm lead length unless otherwise specified. Single-phase, half-wave, 50 Hz, resistive or inductive load.

Maximum Average Forward Rectified Current	1 A
Peak Forward Surge Current, 10 ms Single Half Sine Wave	50 A
Maximum Forward Voltage at 1.0 A _{DC}	1.2 V
Maximum Reverse Current at 25°C	5.0 μΑ
Maximum Reverse Current at 75°C	100 μΑ
Typical Reverse Recovery Time $-$ Measured with $I_F=0.5$ A, $I_R=1.0$ A, $I_\pi=0.25$ A	2 μs
Typical Junction Capacitance at 1.0 MHz and Reverse Voltage of 4.0 V _{DC}	20 pF
Typical Thermal Resistance	50°C/W
Operating Temperature Range	-65 to +175°C
Storage Temperature Range	-65 to +175°C


50 to 1000 V

G1 Series

VOLTAGE RATINGS

Туре	Maximum Forward Voltage at 1.0 A _{DC}	Maximum RMS Voltage	Maximum Recurrent Peak Reverse Voltage
G1A	1.2 V	35 V	50 V
G1B	1.2 V	70 V	100 V
G1D	1.1 V	140 V	200 V
G1G	1.1 V	280 V	400 V
G1J	1.1 V	420 V	600 V
G1K	1.1 V	560 V	800 V
G1M	1.1 V	700 V	1000 V

CASE OUTLINE

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature and 10 mm lead length unless otherwise specified. Single-phase, half-wave, 50 Hz, resistive or inductive load.

1 A
50 A
1.0 μΑ
100 μΑ
2 μs
14 pF
50°C/W
-65 to +175°C
-65 to +300°C

Fig. 1 — Typical forward characteristic

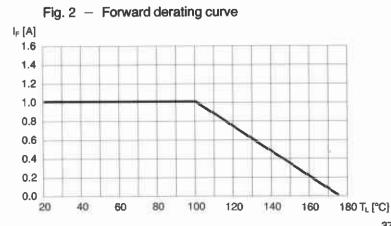
1.00

0.10

0.01

0.02

0.4

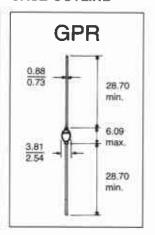

0.6

0.8

1.0

1.2

1.4 V_F[V]

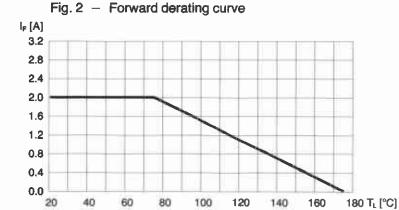

50 to 1000 V

G2 Series

VOLTAGE RATINGS

Туре	Maximum RMS Voltage	Maximum Recurrent Peak Reverse Voltage
G2A	35 V	50 V
G2B	70 V	100 V
G2D	140 V	200 V
G2G	280 V	400 V
G2J	420 V	600 V
G2K	560 V	800 V
G2M	700 V	1000 V

CASE OUTLINE

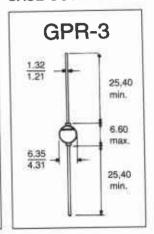

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature and 10 mm lead length unless otherwise specified. Single-phase, half-wave, 50 Hz, resistive or inductive load.

Maximum Average Forward Rectified Current	2 A
Peak Forward Surge Current, 10 ms Single Half Sine Wave	50 A
Maximum Forward Voltage at 2.0 A _{DC}	1.2 V
Maximum Reverse Current at 25°C	0.2 μΑ
Maximum Reverse Current at 100°C	10 μΑ
Maximum Reverse Recovery Time – Measured with $I_F=0.5\text{A},\ I_R=1.0\text{A},\ i_\pi=0.25\text{A}$	2 μs
Typical Junction Capacitance at 1.0 MHz and Reverse Voltage of 4.0 V _{DC}	14 pF
Typical Thermal Resistance	50°C/W
Operating Temperature Range	-65 to +175°C
Storage Temperature Range	-65 to +300°C

Fig. 1 — Typical forward characteristic

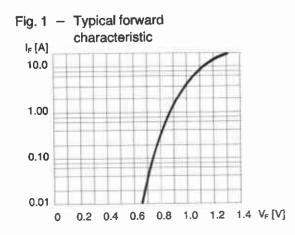
1,_F[A]
10.0
1.00
0.10
0.01
0.02 0.4 0.6 0.8 1.0 1.2 1.4 V_F[V]

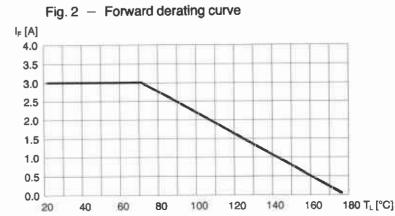

200 to 800 V

1N5624 thru 1N5627

VOLTAGE RATINGS

Туре	Maximum RMS Voltage	Maximum Recurrent Peak Reverse Voltage
1N5624	140 V	200 V
1N5625	280 V	400 V
1N5626	420 V	600 V
1N5627	560 V	800 V

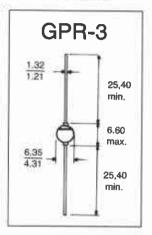

CASE OUTLINE



MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature and 10 mm lead length unless otherwise specified. Single-phase, half-wave, 50 Hz, resistive or inductive load.

Maximum Average Forward Rectified Current	3 A
Peak Forward Surge Current, 10 ms Single Half Sine Wave	125 A
Maximum Forward Voltage at 3.0 A _{DC}	1.0 V
Maximum Reverse Current at 25°C	1.0 μΑ
Maximum Reverse Current at 100°C	100 μΑ
Typical Reverse Recovery Time – Measured with $I_F = 0.5$ A, $I_R = 1.0$ A, $i_{\pi} = 0.25$ A	3 μs
Typical Junction Capacitance at 1.0 MHz and Reverse Voltage of 4.0 V _{DC}	30 pF
Typical Thermal Resistance	35°C/W
Operating Temperature Range	-65 to +175°C
Storage Temperature Range	-65 to +300°C


50 to 1000 V

G3 Series

VOLTAGE RATINGS

Туре	Maximum Forward Voltage at 3.0 A _{DC}	Maximum RMS Voltage	Maximum Recurrent Peak Reverse Voltage
G3A	1.2 V	35 V	50 V
G3B	1.2 V	70 V	100 V
G3D	1.1 V	140 V	200 V
G3G	1.1 V	280 V	400 V
G3J	1.1 V	420 V	600 V
G3K	1.1 V	560 V	800 V
G3M	1.1 V	700 V	1000 V

CASE OUTLINE

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature and 10 mm lead length unless otherwise specified. Single-phase, half-wave, 50 Hz, resistive or inductive load.

Maximum Average Forward Rectified Current	3 A
Peak Forward Surge Current, 10 ms Single Half Sine Wave	125 A
Maximum Reverse Current at 25°C	1 μΑ
Maximum Reverse Current at 100°C	100 μΑ
Typical Reverse Recovery Time $-$ Measured with $I_F=0.5\text{A},\ I_R=1.0\text{A},\ i_\pi=0.25\text{A}$	3 μs
Typical Junction Capacitance at 1.0 MHz and Reverse Voltage of 4.0 V_{DC}	30 pF
Typical Thermal Resistance	25°C/W
Operating Temperature Range	-65 to +175°C
Storage Temperature Range	-65 to +300°C

Fig. 1 — Typical forward characteristic

1.00

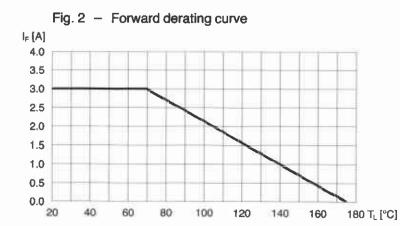
1.00

0.10

0.01

0.02

0.4

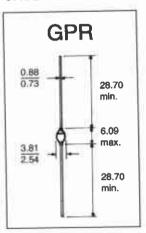

0.6

0.8

1.0

1.2

1.4 V_F[V]


200 to 1000 V / Fast Recovery

1N4942 thru 1N4948

VOLTAGE AND REVERSE RECOVERY RATINGS

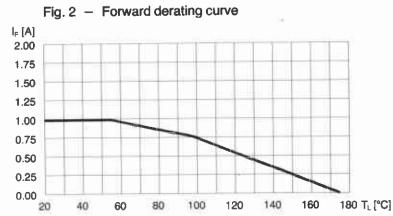
Туре	Maximum Reverse Recovery Time $I_F = .5 \text{ A}, I_R = 1 \text{ A}, i_{rr} = .25 \text{ A}$	Maximum Recurrent Peak Reverse Voltage
1N4942	150 ns	200 V
1N4943	150 ns	300 V
1N4944	150 ns	400 V
1N4945	150 ns	500 V
1N4946	150 ns	600 V
1N4947	250 ns	800 V
1N4948	500 ns	1000 V

CASE OUTLINE

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature and 10 mm lead length unless otherwise specified. Single-phase, half-wave, 50 Hz, resistive or inductive load.

Maximum Average Forward Rectified Current	1 A
Peak Forward Surge Current, 10 ms Single Half Sine Wave	30 A
Maximum Forward Voltage at 1 A _{DC}	1.3 V
Maximum Reverse Current at 25°C	1.0 μΑ
Maximum Reverse Current at 100°C	100 μΑ
Typical Junction Capacitance at 1.0 MHz and Reverse Voltage of 4.0 V _{DC}	20 pF
Typical Thermal Resistance	50°C/W
Operating Temperature Range	-65 to +175°C
Storage Temperature Range	−65 to +200°C

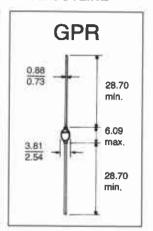

Fig. 1 — Typical forward characteristic

1.00

0.10

0.01

0.02 0.4 0.6 0.8 1.0 1.2 1.4 V_F[V]


200 to 1000 V

1N5614 even thru 1N5622

VOLTAGE RATINGS

Туре	Maximum RMS Voltage	Maximum Recurrent Peak Reverse Voltage
1N5614	140 V	200 V
1N5616	280 V	400 V
1N5618	420 V	600 V
1N5620	560 V	800 V
1N5622	700 V	1000 V

CASE OUTLINE

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature and 10 mm lead length unless otherwise specified. Single-phase, half-wave, 50 Hz, resistive or inductive load.

Maximum Average Forward Rectified Current	1 A
Peak Forward Surge Current, 10 ms Single Half Sine Wave	50 A
Maximum Forward Voltage at 1.0 A _{DC}	1.2 V
Maximum Reverse Current at 25°C	0.5 μΑ
Maximum Reverse Current at 100°C	25 μΑ
Typical Reverse Recovery Time $-$ Measured with $I_F=0.5$ A, $I_R=1.0$ A, $i_\pi=0.25$ A	2 μs
Typical Junction Capacitance at 1.0 MHz and Reverse Voltage of 12.0 V_{DC}	20 pF
Typical Thermal Resistance	50°C/W
Operating Temperature Range	-193 to +200°C
Storage Temperature Range	-193 to +200°C

0.0

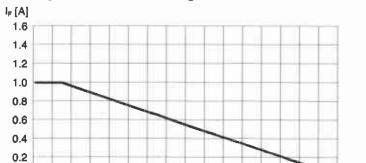
60

80

100

RATING AND CHARACTERISTIC CURVES

Fig. 1 — Typical forward characteristic


1_F[A]

1.00

0.10

0.01

0.02 0.4 0.6 0.8 1.0 1.2 1.4 V_F[V]

120

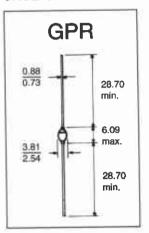
140

160

180

200 T_L [°C]

Fig. 2 - Forward derating curve


200 to 1000 V / Fast Recovery

1N5615 odd thru 1N5623

VOLTAGE AND REVERSE RECOVERY RATINGS

70117087110 1110111111111111111111111111			
Туре	Maximum Reverse Recovery Time $I_F = .5$ A, $I_R = 1$ A, $I_{\pi} = .25$ A	Maximum Recurrent Peak Reverse Voltage	
1N5615	150 ns	200 V	
1N5617	150 ns	400 V	
1N5619	250 ns	600 V	
1N5621	300 ns	800 V	
1N5623	500 ns	1000 V	

CASE OUTLINE

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature and 10 mm lead length unless otherwise specified. Single-phase, half-wave, 50 Hz, resistive or inductive load.

Maximum Average Forward Rectified Current	1 A
Peak Forward Surge Current, 10 ms Single Half Sine Wave	50 A
Maximum Forward Voltage at 1.0 A _{DC}	1.2 V
Maximum Reverse Current at 25°C	0.5 μΑ
Maximum Reverse Current at 100°C	25 μ A
Typical Junction Capacitance at 1.0 MHz and Reverse Voltage of 4.0 VDC	20 pF
Typical Thermal Resistance	50°C/W
Operating Temperature Range	-193 to +200°C
Storage Temperature Range	-193 to +200°C

Fig. 1 — Typical forward characteristic

1.00

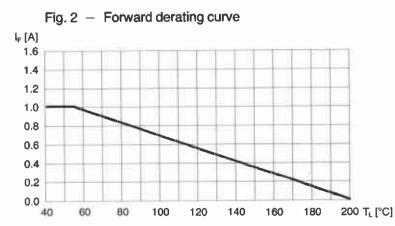
0.10

0.01

0.02

0.4

0.6

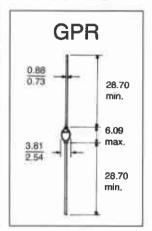

0.8

1.0

1.2

1.4

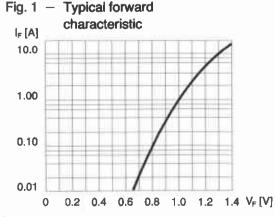
V_F[V]

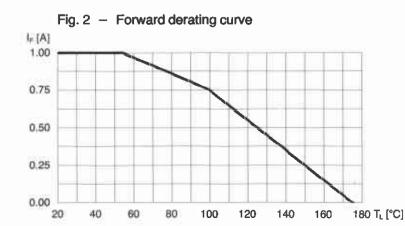

50 to 1000 V / Fast Recovery

RG1 Series

VOLTAGE AND REVERSE RECOVERY RATINGS

Туре	Maximum Reverse Recovery Time $I_F = .5$ A, $I_R = 1$ A, $I_{rr} = .25$ A	Maximum Recurrent Peak Reverse Voltage
RG1A	150 ns	50 V
RG1B	150 ns	100 V
RG1D	150 ns	200 V
RG1G	150 ns	400 V
RG1J	150 ns	600 V
RG1K	250 ns	800 V
RG1M	500 ns	1000 V

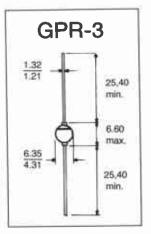

CASE OUTLINE



MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature and 10 mm lead length unless otherwise specified. Single-phase, half-wave, 50 Hz, resistive or inductive load.

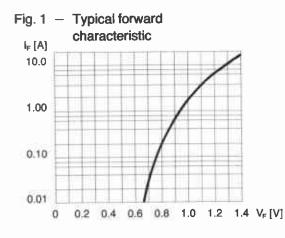
Maximum Average Forward Rectified Current	1 A
Peak Forward Surge Current, 10 ms Single Half Sine Wave	30 A
Maximum Forward Voltage at 1.0 A _{DC}	1.3 V
Maximum Reverse Current at 25°C	1.0 μΑ
Maximum Reverse Current at 100°C	100 μΑ
Typical Junction Capacitance at 1.0 MHz and Reverse Voltage of 4.0 V_{DC}	20 pF
Typical Thermal Resistance	50°C/W
Operating Temperature Range	-65 to +175°C
Storage Temperature Range	-65 to +300°C

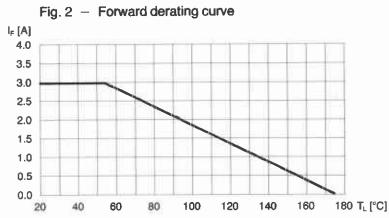

50 to 1000 V / Fast Recovery

RG3 Series

VOLTAGE AND REVERSE RECOVERY RATINGS

Туре	Maximum Reverse Recovery Time $I_F = .5 \text{ A}, \ I_R = 1 \text{ A}, \ i_{rr} = .25 \text{ A}$	Maximum Recurrent Peak Reverse Voltage
RG3A	150 ns	50 V
RG3B	150 ns	100 V
RG3D	150 ns	200 V
RG3G	150 ns	400 V
RG3J	150 ns	600 V
RG3K	250 ns	800 V
RG3M	500 ns	1000 V

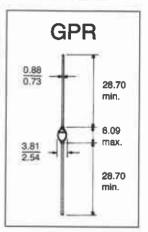

CASE OUTLINE



MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature and 10 mm lead length unless otherwise specified. Single-phase, half-wave, 50 Hz, resistive or inductive load.

Maximum Average Forward Rectified Current	3 A
Peak Forward Surge Current, 10 ms Single Half Sine Wave	100 A
Maximum Forward Voltage at 3.0 A _{DC}	1.3 V
Maximum Reverse Current at 25°C	2.0 μΑ
Maximum Reverse Current at 100°C	100 μΑ
Typical Junction Capacitance at 1.0 MHz and Reverse Voltage of 4.0 V _{DC}	35 pF
Typical Thermal Resistance	25°C/W
Operating Temperature Range	-65 to +175°C
Storage Temperature Range	-65 to +300°C


Clamper/Damper

CG1 DG1

VOLTAGE AND RECOVERY RATINGS

Туре	Typical Forward Recovery Voltage	Maximum Reverse Recovery Time	Maximum Recurrent Peak Reverse Voltage
CG1	30 V	15 μs	1400 V
DG1	25 V	20 μ s	1400 V

CASE OUTLINE

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature and 10 mm lead length unless otherwise specified. Single-phase, half-wave, 50 Hz, resistive or inductive load.

Maximum Average Forward Rectified Current	1.5 A
Peak Forward Surge Current, 10 ms Single Half Sine Wave	50 A
Maximum Reverse Current at 25°C	5.0 μΑ
Maximum Reverse Current at 125°C	100 μΑ
Typical Thermal Resistance	50°C/W
Operating Temperature Range	-65 to +125°C
Storage Temperature Range	−65 to +200°C

Fig. 1 — Typical forward characteristic

1,_F[A]

10.0

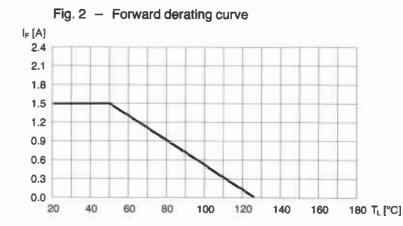
1.00

0.10

0.01

0.02

0.4


0.6

0.8

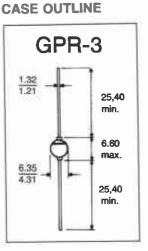
1.0

1.2

1.4 V_F[V]

BY228

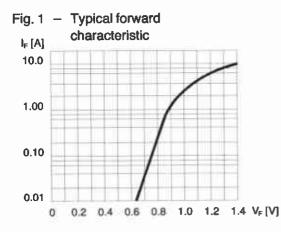
1500 V

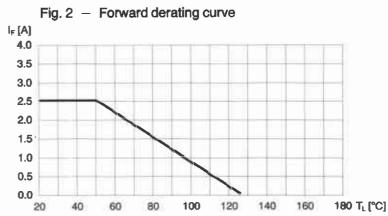

VOLTAGE RATINGS

Type

BY228

Maximum Recurrent
Peak Reverse Voltage

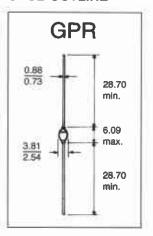

1500 V



MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature and 10 mm lead length unless otherwise specified. Single-phase, half-wave, 50 Hz, resistive or inductive load.

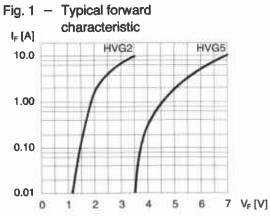
Maximum Average Forward Rectified Current	2.5 A
Peak Forward Surge Current, 10 ms Single Half Sine Wave	100 A
Maximum Forward Voltage at 5 A _{DC}	1.5 V
Maximum Reverse Current at 25°C	5 μΑ
Maximum Reverse Current at 125°C	200 μΑ
Maximum Reverse Recovery Time	20 μ s
Typical Thermal Resistance	25 °C/W
Operating Temperature Range	-65 to +140°C
Storage Temperature Range	-65 to +200°C


2000 to 5000 V

HVG Series

VOLTAGE RATINGS

CASE OUTLINE

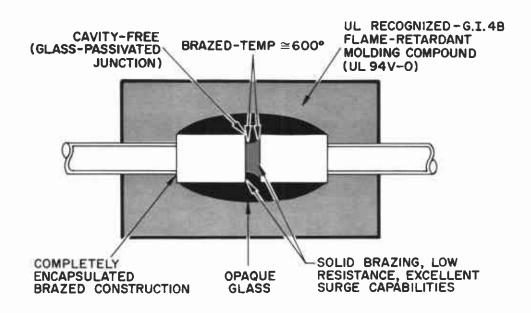

Туре	Maximum Forward Voltage at 0.1 Apc	Maximum Recurrent Peak Reverse Voltage
HVG2	3.0 V	2000 V
HVG3	4.0 V	3000 V
HVG4	6.0 V	4000 V
HVG5	8.0 V	5000 V



MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature and 10 mm lead length unless otherwise specified. Single-phase, half-wave, 50 Hz, resistive or inductive load.

Maximum Average Forward Rectified Current	0.3 to 0.15 A
Peak Forward Surge Current, 10 ms Single Half Sine Wave	25 to 8 A
Maximum Reverse Current at 25°C	5 μΑ
Maximum Reverse Current at 100°C	25 μΑ
Typical Thermal Resistance	50 °C/W
Operating Temperature Range	-65 to +150°C
Storage Temperature Range	-65 to +200°C



Unit	GPR	ickage GPD	JANTX AVAILABLE	Package		
	GPR	GPD				
1N483B						
1N485B			- 1			
1N486B			•	0.4 <u>5</u> 0.55		
			_ 1	25.40 min		
1N645						
1N647				5.08		
1N649		_		2.03 3.30		
1N645-1		-		3.30 25.40		
1N647-1			- 1	min		
1N649-1		-	- 1	GPD		
	_			GPD L_1		
1N3611						
1N3612	•		1.0	0.00		
1N3613				0.88 28.70		
1N3614	_			min.		
1N3957	•		• 1			
1N4245				6.09		
1N4246				3.81 2.54 - max		
1N4247			-	2.54		
1N4248			-	28.7		
1N4249			-	min,		
				GPR L		
1N4942						
1N4944			-			
1N4946			-	1.32		
1N4947				1.21 25.4		
1N4948			•	min		
1N5624*				A-1		
1N5625*		1		○ I 6.60		
1N5626*			1	6.35		
1N5627*				4.31		
				25,4 min		
GPR 3 Package				GPR 3		
				+ 1		
1N1731A*				32 min 0.86 0.71		
1N1733A**				0.71		
1N1734A**				+		
				L → ★ - 9.5		
				507		
				32 min.		
				*L = 12,7		

Environmental test conditions and further information see page 107.

GRAPHIC REPRESENTATION OF SUPERECTIFIER'S SUPERIORITY

GI SUPERECTIFIER

DOUBLE NAIL HEAD

DOUBLE SLUG

DOUBLE PLUG

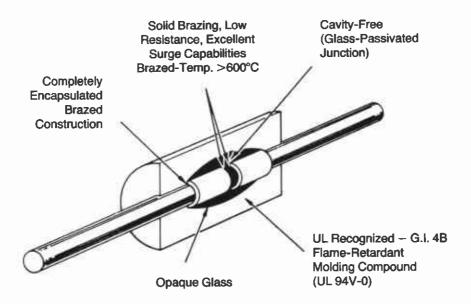
0.4 to 3 Amperes

50 V to 1600 V

Introduction

No other 1 to 3 Amp rectifier - plastic, glass, or metal - can match (or even approach) SUPERECTIFIER's combination of features ... the result of General Instrument's unique glass-plastic construction:

- Brazed at greater than 600°C at both leads and cell eliminates all soft solders
- Exclusive UL recognized flame-retardant epoxy molding compound rated 94V-0, the highest available
 - Patented glass passivation
 - Reliability proved equal to military requirements
- Hermetically sealed construction
- Cost effective construction


General instrument's SUPERECTIFIER is exactly that ... a super rectifier. There is nothing else in the world like it.

In cell construction, most other rectifiers rated up to 3 Amps are soft soldered or are only pressure contacted. SUPERECTIFIER is made into an entirely solid unit with its leads and cell brazed at temperatures greater than 600°C. All other rectifiers fail at half that temperature.

In cell protection, conventional plastic rectifiers use either varnish, silicon rubber or a thin film of silicon oxide to protect the junction. SUPERECTIFIER uses a patented glass passivation to seal its junction hermetically.

In device encapsulation, again SUPERECTIFIER is the only one that won't go up in flames. It is one of the few rectifier using an exclusive flame-RETARDANT molding compound, rated UL 94V-0, the highest rating available. Other plastic rectifiers use flame-ENHANCING compounds. Here again, SUPERECTIFIER's superiority is manifest. With this construction it exceeds environmental standards of MIL-STD-19500/228.

In summary, SUPERECTIFIER is the world's only rectifier with totally brazed construction, with a patented glass passivated junction, and with flame-retardant molding encapsulation.

Glass Passivated Junction Plastic Rectifiers 0.4 to 1.75 AMP

Types: 1N645GP thru 1N649GP

1N3611GP thru 1N3614GP
1N4001GP thru 1N4007GP
1N4245GP thru 1N4249GP
1N5059GP thru 1N5062GP
1N5391GP thru 1N5399GP
GP10A thru GP10M
GP15A thru GP15M
BY126GP and BY127GP
BY226GP thru BY135GP

Features:

- High Temperature Metallurgically Bonded
- Plastic Package has Underwriters Laboratory Classification 94V-0
- Glass Passivated Junction
- No Thermal Runaway
- Exceeds Environmental Standards of MIL-STD-19500/228
- High Temperature Soldering Guaranteed 350°C/10 Second/10 mm Lead Length at 2.25 kg Tension
- Tin Plated Axial Leads, Solderable per MIL-STD-202/208

Glass Passivated Junction Plastic Rectifiers 2 to 3 AMP

Types: 1N5624GP thru 1N5627GP

GP20A thru GP20M GP30A thru GP30M

Features:

- High Temperature Metallurgically Bonded
- Plastic Package has Underwriters Laboratory Classification 94V-0
- Glass Passivated Junction in DO 27 Package
- 2.0 Ampere (GP20) and 3.0 Ampere Operation (GP30) at 55°C Ambient Temperature with no Thermal Runaway
- Typical le less than 1 µA
- Exceeds Environmental Standards of MIL-STD-19500/228
- Tin Plated Axial Leads, Solderable per MIL-STD-202/208
- High Temperature Soldering Guaranteed 350°C/10 Second/10 mm Lead Length at 2.25 kg Tension

Glass Passivated Junction Plastic Fast Recovery Rectifiers 0.4 to 3 AMP

Types: 1N4942GP thru 1N4948GP

RGP01-10 thru RGP01-16 RGP10A thru RGP10M RGP15A thru RGP15M RGP30A thru RGP30M BA157GP thru BA159GP BY206GP and BY207GP

Features:

- High Temperature Metallurgically Bonded
- High Rectification Efficiency to 100 kHz
- No Thermal Runaway
- Exceeds Environmental Standards of MIL-STD-19500/228
- Includes all Advantages of the SUPERECTIFIER Design
- Tin Plated Axial Leads, Solderable per MIL-STD-202/208

Glass Passivated Junction Plastic Controlled Avalanche Rectifiers 1.5 AMP

Type: AGP15-200 thru AGP15-800

Features:

- High Capability for Absorption of Peak Reverse Power
- Designed for Rectifier Applications where Inductive Loads may be switched on and off periodically
- All Advantages of the SUPERECTIFIER Design
- Tin Plated Axial Leads, Solderable per MIL-STD-202/208

Glass Passivated Junction Plastic Zener Rectifiers 160 to 200 VOLTS

Types: ZGP10-160 thru ZGP10-200

Features:

- Reliable SUPERECTIFIER Construction
- Zener Voltages available in 5 %, 10 % and 20 % Tolerances
- High Capability for Absorption of Peak Reverse Power
- Tin Plated Axial Leads, Solderable per MIL-STD-202/208

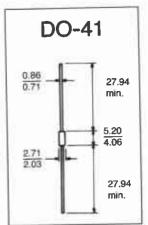
QUICK GUIDE TO SUPERECTIFIERS

TYPE	1N645GP thru 1N649GP	BY206GP* thru BY207GP*	BA157GP* thru BA159GP*	GP10A thru GP10M	1N3611GP thru 1N3614GP	1N4001GP thru 1N4007GP	1N4245GP thru 1N4249GP	thru	RGP10A* thru RGP10M*	BY133GP thru BY135GP	1N5059GP thru 1N5062GP
CASE	DO41	DO41	DO41	DO41	DO41	DO41	DO41	DO41	DO41	DQ15	DO15
l _o (A)	0.4	0.4	0.5	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
@T _A (°C)	25	55	55	55	100	75	55	55	55	75	55
V _R = 50 (V)				GP10A		1N4001GP			RGP10A		
V _R = 100 (V)				GP10B		1N4002GP			RGP10B		
V _R = 200 (V)	1N645GP			GP10D	1N3611GP	1N4003GP	1N4245GP	1N4942GP	RGP10D	BY135GP	1N5059GP
V _R = 300 (V)	1N646GP							1N4943GP			
V _R = 400 (V)	1N647GP	BY206GP	BA157GP	GP10G	1N3612GP	1N4004GP	1N4246GP	1N4944GP	RGP10G		1N5060GF
V _R = 500 (V)	1N648GP							1N4945GP			
V _R = 600 (V)	1N649GP	BY207GP	BA158GP	GP10J	1N3613GP	1N4005GP	1N4247GP	1N4946GP	RGP10J	BY134GP	1N5061GF
V _R = 800 (V)			BA159DGP	GP10K	1N3614GP	1N4006GP	1N4248GP	1N4947GP	RGP10K		1N5062GF
V _R = 1000 (V)			BA159GP	GP10M	1N3957GP	1N4007GP	1N4249GP	1N4948GP	RGP10M		
V _R > 1000 (V)										BY133GP	
SURGE (A)	20	15	20	30	30	30	25	30	30	50	50
V _F (V)	1.2	1.3	1.3	1.1	1,1	1.1	1.2	1.3	1.3	1.2	1.2
Page	55	70	71	59	56	57	58	72	73	61	60

QUICK GUIDE TO SUPERECTIFIERS

TYPE	AGP15-200 thru AGP15-800	GP15A thru GP15M	1N5391GP thru 1N5399GP	RGP15A* thru RGP15M*	BY126GP thru BY127GP	BY226GP thru BY227GP	GP20A thru GP20M	1N5624GP thru 1N5627GP	GP30A thru GP30M	RGP30A* thru RGP30M*
CASE	DO15	DO15	DO15	DO15	DO27	DO27	DO27	DO27A	DO27A	DO27A
I _o (A)	1.5	1,5	1.5	1.5	1.5	1.75	2.0	3.0	3.0	3.0
@T _A (°C)	55	55	70	55	55	55	55	70	55	55
V _R = 50 (V)		GP15A	1N5391GP	RGP15A			GP20A		GP30A	RGP30A
V _R = 100 (V)		GP15B	1N5392GP	RGP15B			GP20B		GP30B	RGP30B
V _R = 200 (V)	AGP15-200	GP15D	1N5393GP	RGP15D			GP20D	1N5624GP	GP30D	RGP30D
V _R = 300 (V)			1N5394GP							
V _R = 400 (V)	AGP15-400	GP15G	1N5395GP	RGP15G			GP20G	1N5625GP	GP30G	RGP30G
V _R = 500 (V)			1N5396GP							
V _R = 600 (V)	AGP15-600	GP15J	1N5397GP	RGP15J	BY126GP	BY226GP	GP20J	1N5626GP	GP30J	RGP30J
V _R = 800 (V)	AGP15-800	GP15K	1N5398GP	RGP15K			GP20K	1N5627GP	GP30K	RGP30K
V _R = 1000 (V)		GP15M	1N5399GP	RGP15M			GP20M		GP30M	RGP30M
V _R > 1000 (V)					BY127GP	BY227GP				
SURGE (A)	50	50	50	50	50	60	65	125	125	125
V _F (V)	1.2	1.1	1.4	1.3	1.3	1.3	1.1	1.0	1.1	1.3
Page	76	63	62	74	64	65	66	67	68	75

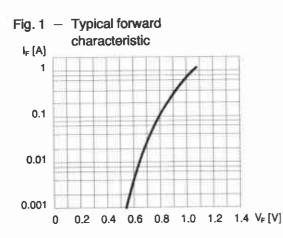
* Fast Recovery


225 to 600 V

1N645GP thru 1N649GP

VOLTAGE RATINGS

	Maximum Recurrent
Туре	Peak Reverse Voltage
1N645GP	225 V
1N646GP	300 V
1N647GP	400 V
1N648GP	500 V
1N649GP	600 V



MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature and 10 mm lead length unless otherwise specified. Single-phase, half-wave, 50 Hz, resistive or inductive load.

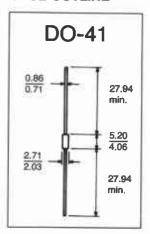
Maximum Average Forward Rectified Current	400 mA
Peak Forward Surge Current, 10 ms Single Half Sine Wave	20 A
Maximum Forward Voltage at 0.4 A _{DC}	1.2 V
Maximum Reverse Current at 25°C	0.5 μΑ
Maximum Reverse Current at 150°C	25 μΑ
Typical Reverse Recovery Time – Measured with $I_F = 20$ mA, $i_{\pi} = 1$ mA	20 μs
Typical Junction Capacitance at 1.0 MHz and Reverse Voltage of 4.0 V _{DC}	15 pF
Typical Thermal Resistance	50°C/W
Operating Temperature Range	-65 to +175℃
Storage Temperature Range	-65 to +175°C

RATING AND CHARACTERISTIC CURVES

SUPERECTIFIER [5]

Fig. 2 - Forward derating curve

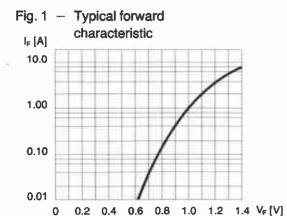
I_F [A] 0.40 0.35 0.30 0.25 0.20 0.15 0.10 0.05 0.00 20 40 60 80 100 120 140 160 180 T_L [°C]

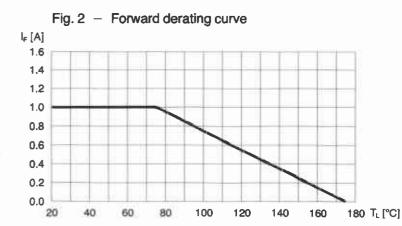

200 to 1000 V

1N3611GP 1N3612GP 1N3613GP 1N3614GP 1N3957GP

VOLTAGE RATINGS

Туре	Maximum RMS Voltage	Maximum Recurrent Peak Reverse Voltage
1N3611GP	140 V	200 V
1N3612GP	280 V	400 V
1N3613GP	420V	600 V
1N3614GP	560 V	800 V
1N3957GP	700 V	1000 V

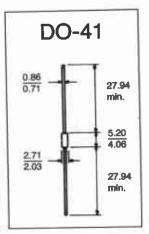

CASE OUTLINE


MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature and 10 mm lead length unless otherwise specified. Single-phase, half-wave, 50 Hz, resistive or inductive load.

Maximum Average Forward Rectified Current	1 A
Peak Forward Surge Current, 10 ms Single Half Sine Wave	30 A
Maximum Forward Voltage at 1.0 A _{DC}	1.0 V
Maximum Reverse Current at 25°C	1.0 μΑ
Maximum Reverse Current at 150°C	300 μ A
Typical Reverse Recovery Time - Measured with I _F = 20 mA, i _{rr} = 1 mA	20 μs
Typical Junction Capacitance at 1.0 MHz and Reverse Voltage of 4.0 V _{DC}	15 pF
Typical Thermal Resistance	50°C/W
Operating Temperature Range	-65 to +175°C
Storage Temperature Range	-65 to +175°C

SUPERECTIFIER [5]


50 to 1000 V

1N4001GP thru 1N4007GP

VOLTAGE RATINGS

Туре	Maximum Forward Voltage at 1.0 A _{DC}	Maximum RMS Voltage	Maximum Recurrent Peak Reverse Voltage
1N4001GP	1.1 V	35 V	50 V
1N4002GP	1.1 V	70 V	100 V
1N4003GP	1.1 V	140 V	200 V
1N4004GP	1.1 V	280 V	400 V
1N4005GP	1.1 V	420 V	600 V
1N4006GP	1.2 V	560 V	V 008
1N4007GP	1.2 V	700 V	1000 V

CASE OUTLINE

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature and 10 mm lead length unless otherwise specified. Single-phase, half-wave, 50 Hz, resistive or inductive load.

Maximum Average Forward Rectified Current	1 A
Peak Forward Surge Current, 10 ms Single Half Sine Wave	30 A
Maximum Reverse Current at 25°C	5 μΑ
Maximum Reverse Current at 125°C	50 μΑ
Typical Reverse Recovery Time – Measured with $I_F = 20$ mA, $I_{rr} = 1$ mA	20 μs
Typical Junction Capacitance at 1.0 MHz and Reverse Voltage of 4.0 V _{DC}	15 pF
Typical Thermal Resistance	50°C/W
Operating Temperature Range	−65 to +175°C
Storage Temperature Range	-65 to +175℃

RATING AND CHARACTERISTIC CURVES

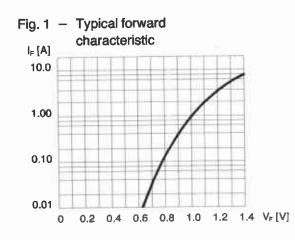
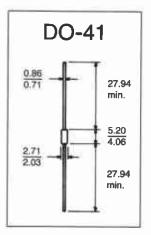


Fig. 2 - Forward derating curve

I_F [A] 1.6 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0.0 40 80 100 120 140 160 180 T_L [°C]


200 to 1000 V

1N4245GP thru 1N4249GP

VOLTAGE RATINGS

Туре	Maximum RMS Voltage	Maximum Recurrent Peak Reverse Voltage
1N4245GP	140 V	200 V
1N4246GP	280 V	400 V
1N4247GP	420 V	600 V
1N4248GP	560 V	800 V
1N4249GP	700 V	1000 V

CASE OUTLINE

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature and 10 mm lead length unless otherwise specified. Single-phase, half-wave, 50 Hz, resistive or inductive load.

Maximum Average Forward Rectified Current	1.0 A
Peak Forward Surge Current, 10 ms Single Half Sine Wave	25 A
Maximum Forward Voltage at 1.0 A _{DC}	1.2 V
Maximum Reverse Current at 25°C	1.0 μΑ
Maximum Reverse Current at 125°C	25 µA
Typical Reverse Recovery Time $-$ Measured with $I_F=20$ mA, $i_\pi=1$ mA	20 μs
Typical Junction Capacitance at 1.0 MHz and Reverse Voltage of 4.0 V_{DC}	15 pF
Typical Thermal Resistance	50°C/W
Operating Temperature Range	-65 to +175°C
Storage Temperature Range	-65 to +175°C

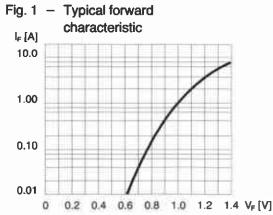
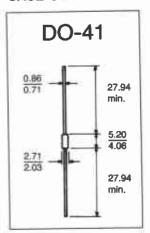


Fig. 2 - Forward derating curve I_F [A] 1.6 1.4 1.2 1.0 8.0 0.6 0.4 0.2 20 40 60 80 100 160 180 T_L [°C]


50 to 1000 V

GP10 Series

VOLTAGE RATINGS

Турө	Maximum Forward Voltage at 1.0 A _{DC}	Maximum RMS Voltage	Maximum Recurrent Peak Reverse Voltage
GP10A	1.1 V	35 V	50 V
GP10B	1.1 V	70 V	100 V
GP10D	1.1 V	140 V	200 V
GP10G	1.1 V	280 V	400 V
GP10J	1.1 V	420 V	600 V
GP10K	1.2 V	560 V	800 V
GP10M	1.2 V	700 V	1000 V

CASE OUTLINE

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature and 10 mm lead length unless otherwise specified. Single-phase, half-wave, 50 Hz, resistive or inductive load.

Maximum Average Forward Rectified Current	1 A
Peak Forward Surge Current, 10 ms Single Half Sine Wave	30 A
Maximum Reverse Current at 25°C	5΄ μΑ
Maximum Reverse Current at 55°C	100 μΑ
Typical Reverse Recovery Time - Measured with I _F = 20 mA, i _{rr} = 1 mA	20 μs
Typical Junction Capacitance at 1.0 MHz and Reverse Voltage of 4.0 V _{DC}	15 pF
Typical Thermal Resistance	50°C/W
Operating Temperature Range	-65 to +175°C
Storage Temperature Range	-65 to +175°C

RATING AND CHARACTERISTIC CURVES

Fig. 1 — Typical forward characteristic

1.00

1.00

0.10

0.01

0.02

0.4

0.5

0.8

1.0

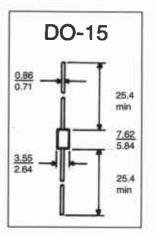
1.2

1.4

V_F[V]

SUPERECTIFIER

Fig. 2 - Forward derating curve $I_{F}[A]$ 1.6 1.4 1.2 1.0 8.0 0.6 0.4 0.2 0.0 20 40 60 80 100 120 140 160 180 T_L [°C]


200 to 800 V

1N5059GP thru 1N5062GP

VOLTAGE RATINGS

Туре	Maximum RMS Voltage	Maximum Recurrent Peak Reverse Voltage
1N5059GP	140 V	200 V
1N5060GP	280 V	400 V
1N5061GP	420 V	600 V
1N5062GP	560 V	800 V

CASE OUTLINE

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature and 10 mm lead length unless otherwise specified. Single-phase, half-wave, 50 Hz, resistive or inductive load.

Maximum Average Forward Rectified Current	1.0 A
Peak Forward Surge Current, 10 ms Single Half Sine Wave	50 A
Maximum Forward Voltage at 1.0 A _{DC}	1.2 V
Maximum Reverse Current at 25°C	5.0 μΑ
Maximum Reverse Current at 75°C	100 μΑ
Typical Reverse Recovery Time – Measured with $I_F=0.5A,\ I_R=1.0A,\ i_\pi=0.25A$	2 μs
Typical Junction Capacitance at 1.0 MHz and Reverse Voltage of 4.0 V_{DC}	20 pF
Typical Thermal Resistance	40°C/W
Operating Temperature Range	-65 to +175°C
Storage Temperature Range	-65 to +175°C

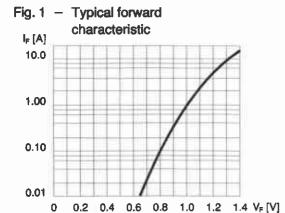
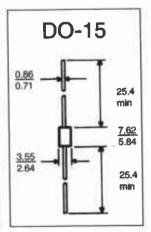


Fig. 2 - Forward derating curve I_F [A] 1.6 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0.0 20 40 60 80 100 120 140 160 180 T_L [°C]

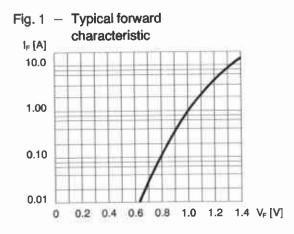

200 to 1300 V

BY133GP thru BY135GP

VOLTAGE RATINGS

Туре	Maximum RMS Voltage	Maximum Recurrent Peak Reverse Voltage
BY133GP	910 V	1300 V
BY134GP	420 V	600 V
BY135GP	140 V	200 V

CASE OUTLINE



MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

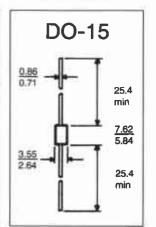
Ratings at 25°C ambient temperature and 10 mm lead length unless otherwise specified. Single-phase, half-wave, 50 Hz, resistive or inductive load.

Maximum Average Forward Rectified Current	1.0 A
Peak Forward Surge Current, 10 ms Single Hatf Sine Wave	50 A
Maximum Forward Voltage at 2.0 A _{DC}	1.2 V
Maximum Reverse Current at 25°C	5.0 μΑ
Maximum Reverse Current at 75°C	100 μΑ
Typical Reverse Recovery Time – Measured with $I_F = 0.5$ A, $I_R = 1.0$ A, $I_{\pi} = 0.25$ A	2.5 μs
Typical Junction Capacitance at 1.0 MHz and Reverse Voltage of 4.0 V _{DC}	25 pF
Typical Thermal Resistance	40°C/W
Operating Temperature Range	-65 to +175°C
Storage Temperature Range	-65 to +175°C

RATING AND CHARACTERISTIC CURVES

SUPERECTIFIER [

Fig. 2 - Forward derating curve I_F [A] 1.6 1.4 1.2 1.0 8.0 0.6 0.4 0.2 0.0 20 100 40 60 80 120 140 160 180 T_L [°C]


50 to 1000 V

1N5391GP thru 1N5399GP

VOLTAGE RATINGS

Туре	Maximum RMS Voltage	Maximum Recurrent Peak Reverse Voltage
1N5391GP	35 V	50 V
1N5392GP	70 V	100 V
1N5393GP	140 V	200 V
1N5394GP	210 V	300 V
1N5395GP	280 V	400 V
1N5396GP	350 V	500 V
1N5397GP	420 V	600 V
1N5398GP	560 V	800 V
1N5399GP	700 V	1000 V

CASE OUTLINE

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature and 10 mm lead length unless otherwise specified. Single-phase, half-wave, 50 Hz, resistive or inductive load.

Maximum Average Forward Rectified Current	1.5 A
Peak Forward Surge Current, 10 ms Single Half Sine Wave	50 A
Maximum Forward Voltage at 1.5 A _{DC}	1.4 V
Maximum Reverse Current at 25°C	5 μΑ
Maximum Reverse Current at 150°C	300 μΑ
Typical Reverse Recovery Time $-$ Measured with $I_F=0.5$ A, $I_R=1.0$ A, $i_\pi=0.25$ A	2 μ s
Typical Junction Capacitance at 1.0 MHz and Reverse Voltage of 4.0 V _{DC}	25 pF
Typical Thermal Resistance	40°C/W
Operating Temperature Range	-65 to +175°C
Storage Temperature Range	-65 to +175°C

Fig. 1 — Typical forward characteristic

1, [A]
10.0

1.00

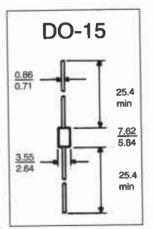
0.10

0.01

0.02
0.4
0.6
0.8
1.0
1.2
1.4 V_F[V]

SUPERECTIFIER [5]

Fig. 2 - Forward derating curve I_F [A] 2.0 1.75 1.5 1,25 1.0 0.75 0.5 0.25 0.0 20 40 60 80 100 120 140 180 T_L [°C]


50 to 1000 V

GP15 Series

VOLTAGE RATINGS

Туре	Maximum RMS Voltage	Maximum Recurrent Peak Reverse Voltage
GP15A	35 V	50 V
GP15B	70 V	100 V
GP15D	140 V	200 V
GP15G	280 V	400 V
GP15J	420 V	600 V
GP15K	560 V	800 V
GP15M	700 V	1000 V

CASE OUTLINE

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature and 10 mm lead length unless otherwise specified. Single-phase, half-wave, 50 Hz, resistive or inductive load.

Maximum Average Forward Rectified Current	1.5 A
Peak Forward Surge Current, 10 ms Single Half Sine Wave	50 A
Maximum Forward Voltage at 1.5 A _{DC}	1.1 V
Maximum Reverse Current at 25°C	5 μΑ
Maximum Reverse Current at 55°C	100 μΑ
Typical Reverse Recovery Time – Measured with $I_F = 0.5$ A, $I_R = 1.0$ A, $I_{\pi} = 0.25$ A	2 µs
Typical Junction Capacitance at 1.0 MHz and Reverse Voltage of 4.0 V _{DC}	25 pF
Typical Thermal Resistance	40°C/W
Operating Temperature Range	-65 to +175°C
Storage Temperature Range	-65 to +175°C

RATING AND CHARACTERISTIC CURVES

Fig. 1 — Typical forward characteristic

1, [A]

1.00

0.10

0.01

0.02

0.4

0.6

0.8

1.0

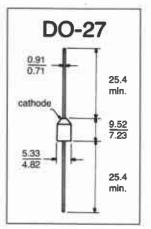
1.2

1.4

V_F[V]

SUPERECTURIER

Fig. 2 - Forward derating curve I_F [A] 2.4 2.1 1.8 1.5 1.2 0.9 0.6 0.3 0.0 140 160 180 T_L [°C] 80 100 120 20 40 60

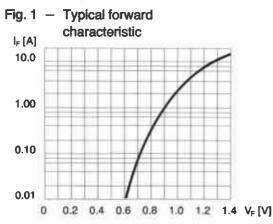

650 to 1250 V

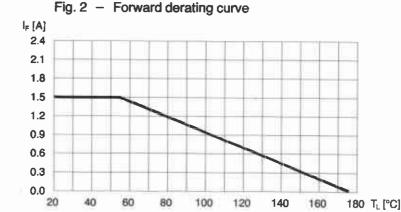
BY126GP BY127GP

VOLTAGE RATINGS

Туре	Maximum RMS Voltage	Maximum Recurrent Peak Reverse Voltage
BY126GP	450 V	650 V
BY127GP	850 V	1250 V

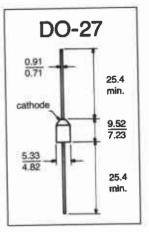
CASE OUTLINE




MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature and 10 mm lead length unless otherwise specified. Single-phase, half-wave, 50 Hz, resistive or inductive load.

Maximum Average Forward Rectified Current	1.5 A
Peak Forward Surge Current, 10 ms Single Half Sine Wave	50 A
Maximum Forward Voltage at 5.0 A _{DC}	1.5 V
Maximum Reverse Current at 25°C	5.0 μΑ
Maximum Reverse Current at 55°C	100 µA
Typical Reverse Recovery Time – Measured with $I_F=0.5~\text{A},~I_R=1.0~\text{A},~i_{rr}=0.25~\text{A}$	2.5 μs
Typical Junction Capacitance at 1.0 MHz and Reverse Voltage of 4.0 V _{DC}	40 pF
Typical Thermal Resistance	30°C/W
Operating Temperature Range	-65 to +175°C
Storage Temperature Range	-65 to +175°C

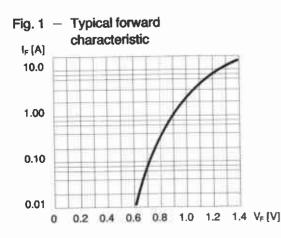

1.75 A Superectifier

650 to 1250 V

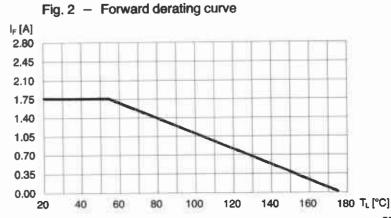
BY226GP BY227GP

VOLTAGE RATINGS

CASE OUTLINE



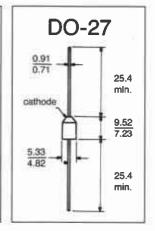
MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS


Ratings at 25°C ambient temperature and 10 mm lead length unless otherwise specified. Single-phase, half-wave, 50 Hz, resistive or inductive load.

Maximum Average Forward Rectified Current	1.75 A
Peak Forward Surge Current, 10 ms Single Half Sine Wave	60 A
Maximum Forward Voltage at 5.0 A _{DC}	1.5 V
Maximum Reverse Current at 25°C	5.0 μA
Maximum Reverse Current at 55°C	100 μΑ
Typical Reverse Recovery Time – Measured with $I_F = 0.5$ A, $I_R = 1.0$ A, $I_{rr} = 0.25$ A	2.5 µs
Typical Junction Capacitance at 1.0 MHz and Reverse Voltage of 4.0 V _{DC}	40 pF
Typical Thermal Resistance	30°C/W
Operating Temperature Range	-65 to +175°C
Storage Temperature Range	-65 to +175°C

RATING AND CHARACTERISTIC CURVES

SUPERECTIFIER 5

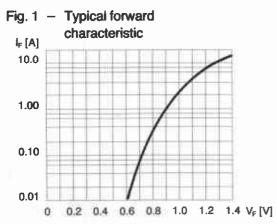

50 to 1000 V

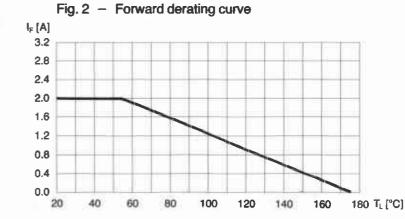
GP20 Series

VOLTAGE RATINGS

CASE OUTLINE

Туре	Maximum Forward Voltage at 2.0 A _{oc}	Maximum RMS Voltage	Maximum Recurrent Peak Reverse Voltage
GP20A	1.2 V	35 V	50 V
GP20B	1.2 V	70 V	100 V
GP20D	1.1 V	140 V	200 V
GP20G	1.1 V	280 V	400 V
GP20J	1.1 V	420 V	600 V
GP20K	1.1 V	560 V	800 V
GP20M	1.1 V	700 V	1000 V

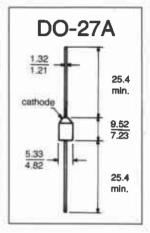



MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature and 10 mm lead length unless otherwise specified. Single-phase, half-wave, 50 Hz, resistive or inductive load.

Maximum Average Forward Rectified Current	2.0 A
Peak Forward Surge Current, 10 ms Single Half Sine Wave	65 A
Maximum Reverse Current at 25°C	5 μΑ
Maximum Reverse Current at 55°C	100 μΑ
Typical Reverse Recovery Time $-$ Measured with $I_F=0.5\text{A},\ I_R=1.0\text{A},\ i_\pi=0.25\text{A}$	2.5 μs
Typical Junction Capacitance at 1.0 MHz and Reverse Voltage of 4.0 V _{DC}	40 pF
Typical Thermal Resistance	30°C/W
Operating Temperature Range	-65 to +175°C
Storage Temperature Range	-65 to +175°C

SUPERECTIFIER 5


200 to 800 V

1N5624GP thru 1N5627GP

VOLTAGE RATINGS

Туре	Maximum RMS Voltage	Maximum Recurrent Peak Reverse Voltage
1N5624GP	140 V	200 V
1N5625GP	280 V	400 V
1N5626GP	420 V	600 V
1N5627GP	560 V	800 V

CASE OUTLINE

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature and 10 mm lead length unless otherwise specified. Single-phase, half-wave, 50 Hz, resistive or inductive load.

3.0 A
125 A
1.0 V
5.0 μA
100 μΑ
3 µs
60 pF
25°C/W
-65 to +175°C
-65 to +175°C

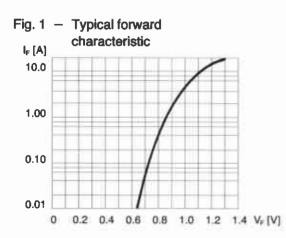
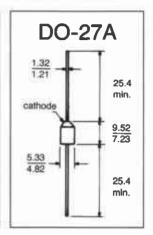


Fig. 2 - Forward derating curve le [A] 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 20 40 60 80 100 120 160 180 T_L [°C]


50 to 1000 V

GP30 Series

VOLTAGE RATINGS

Туре	Maximum Forward Voltage at 3.0 A _{DC}	Maximum RMS Voltage	Maximum Recurrent Peak Reverse Voltage
GP30A	1.2 V	35 V	50 V
GP30B	1.2 V	70 V	100 V
GP30D	1.1 V	140 V	200 V
GP30G	1.1 V	280 V	400 V
GP30J	1.1 V	420 V	600 V
GP30K	1.1 V	560 V	800 V
GP30M	1.1 V	720 V	1000 V

CASE OUTLINE

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature and 10 mm lead length unless otherwise specified. Single-phase, half-wave, 50 Hz, resistive or inductive load.

Maximum Average Forward Rectified Current	3 A
Peak Forward Surge Current, 10 ms Single Half Sine Wave	125 A
Maximum Reverse Current at 25°C	5 μΑ
Maximum Reverse Current at 55°C	100 μΑ
Typical Reverse Recovery Time $-$ Measured with $I_F=0.5$ A, $I_R=1.0$ A, $I_\pi=0.25$ A	3 μs
Typical Junction Capacitance at 1.0 MHz and Reverse Voltage of 4.0 V _{DC}	60 pF
Typical Thermal Resistance	25°C/W
Operating Temperature Range	-65 to +175°C
Storage Temperature Range	-65 to +175°C

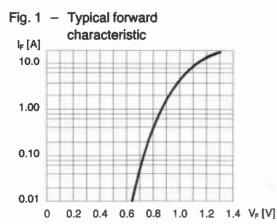
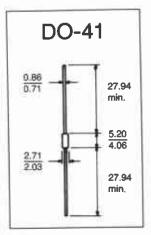


Fig. 2 - Forward derating curve $I_{F}[A]$ 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 20 40 80 60 100 120 140 160 180 TL [°C]

Photoflash Rectifier


1000 to 1600 V

RGP01 Series

VOLTAGE RATINGS

Туре	Maximum RMS Voltage	Maximum Recurrent Peak Reverse Voltage
RGP01-10	700 V	1000 V
RGP01-12	840 V	1200 V
RGP01-14	980 V	1400 V
RGP01-16	1120 V	1600 V

CASE OUTLINE

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature and 10 mm lead length unless otherwise specified. Single-phase, half-wave, 50 Hz, resistive or inductive load.

Maximum Average Forward Rectified Current	100 mA
Peak Forward Surge Current, 10 ms Single Half Sine Wave	20 A
Maximum Forward Voltage at 0.1 A _{DC}	1.5 V
Maximum Reverse Current at 25°C	5 μΑ
Maximum Reverse Current at 55°C	100 μΑ
Maximum Reverse Recovery Time $-$ Measured with $I_F=10$ mA, $I_R=10$ mA, $I_{\pi}=1$ mA	1 μs
Typical Junction Capacitance at 1.0 MHz and Reverse Voltage of 4.0 V _{DC}	15 pF
Typical Thermal Resistance	50°C/W
Operating Temperature Range	-65 to +175°C
Storage Temperature Range	-65 to +175°C

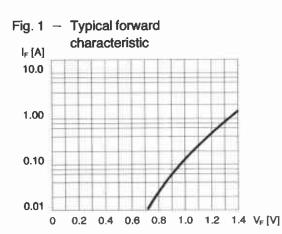


Fig. 2 — Forward derating curve

1/2 [mA]

100

75

50

25

0

20

40

60

80

100

120

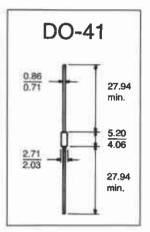
140

160

180 T_L [°C]

350 and 600 V / Fast Recovery

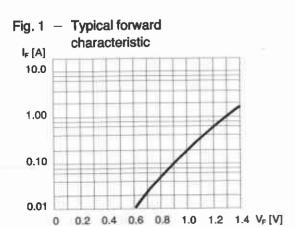
BY206GP BY207GP

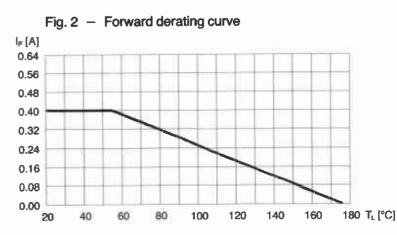

VOLTAGE RATINGS

Type Maximum Recurrent Peak Reverse Voltage

BY206GP 350 V

BY207GP 600 V


CASE OUTLINE


MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature and 10 mm lead length unless otherwise specified. Single-phase, half-wave, 50 Hz, resistive or inductive load.

Maximum Average Forward Rectified Current	0.4 A
Peak Forward Surge Current, 10 ms Single Half Sine Wave	15 A
Maximum Forward Voltage at 2.0 A _{DC}	1.5 V
Maximum Reverse Current at 25°C	5.0 μΑ
Maximum Reverse Current at 100°C	100 μΑ
Typical Reverse Recovery Time - Measured with I _F = 0.4 A, V _R = 50 V	1 μs
Typical Junction Capacitance at 1.0 MHz and Reverse Voltage of 4.0 V _{DC}	15 pF
Typical Thermal Resistance	50°C/W
Operating Temperature Range	-65 to +175°C
Storage Temperature Range	-65 to +175℃


400 to 1000 V / Fast Recovery

BA157GP thru BA159GP

VOLTAGE AND REVERSE RECOVERY RATINGS

VOLTAGE AND REVERSE THE STATE OF THE STATE O			
Туре	Maximum Reverse Recovery Time $I_F = .5 \text{ A}, \ I_R = 1 \text{ A}, \ I_\pi = .25 \text{ A}$	Maximum Recurrent Peak Reverse Voltage	
BA157GP	150 ns	400 V	
BA158GP	250 ns	600 V	
BA159DGP	500 ns	800 V	
BA159GP	500 ns	1000 V	

CASE OUTLINE

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature and 10 mm lead length unless otherwise specified. Single-phase, half-wave, 50 Hz, resistive or inductive load.

Maximum Average Forward Rectified Current	0.5 A
Peak Forward Surge Current, 10 ms Single Half Sine Wave	20 A
Maximum Forward Voltage at 1.0 A _{DC}	1.5 V
Maximum Reverse Current at 25°C	5.0 μ A
Maximum Reverse Current at 55°C	100 μΑ
Typical Junction Capacitance at 1.0 MHz and Reverse Voltage of 4.0 V _{DC}	15 pF
Typical Thermal Resistance	50°C/W
Operating Temperature Range	−65 to +175°C
Storage Temperature Range	-65 to +175°C

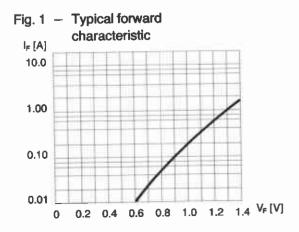
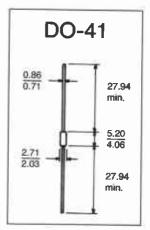


Fig. 2 - Forward derating curve I_F [A] 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 180 T_L [°C] 40 60 80 100 120 20


200 to 1000 V / Fast Recovery

1N4942GP thru 1N4948GP

VOLTAGE AND REVERSE RECOVERY RATINGS

Туре	Maximum Reverse Recovery Time $I_F = .5 \text{ A}, I_R = 1 \text{ A}, i_{rr} = .25 \text{ A}$	Maximum Recurrent Peak Reverse Voltage
1N4942GP	150 ns	200 V
1 N4944 GP	150 ns	400 V
1N4946GP	150 ns	600 V
1N4947GP	250 ns	800 V
1N4948GP	500 ns	1000 V

CASE OUTLINE

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature and 10 mm lead length unless otherwise specified. Single-phase, half-wave, 50 Hz, resistive or inductive load.

Maximum Average Forward Rectified Current	1.0 A
Peak Forward Surge Current, 10 ms Single Half Sine Wave	25 A
Maximum Forward Voltage at 1.0 A _{DC}	1.3 V
Maximum Reverse Current at 25°C	1.0 μΑ
Maximum Reverse Current at 150°C	200 μΑ
Typical Junction Capacitance at 1.0 MHz and Reverse Voltage of 4.0 V_{DC}	15 pF
Typical Thermal Resistance	50°C/W
Operating Temperature Range	-65 to +175°C
Storage Temperature Range	-65 to +175°C

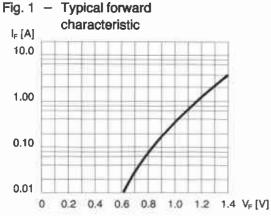
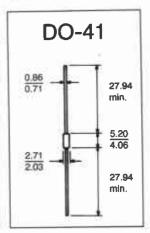


Fig. 2 - Forward derating curve IF [A] 1.00 0.75 0.50 0.25 0.00 20 40 60 80 100 120 140 160 180 T_L [°C]


50 to 1000 V / Fast Recovery

RGP10 Series

VOLTAGE AND REVERSE RECOVERY RATINGS

Туре	Maximum Reverse Recovery Time $I_F = .5 \text{ A}$, $I_R = 1 \text{ A}$, $I_{rr} = .25 \text{ A}$	Maximum Recurrent Peak Reverse Voltage
RGP10A	150 ns	50 V
RGP10B	150 ns	100 V
RGP10D	150 ns	200 V
RGP10G	150 ns	400 V
RGP10J	250 ns	600 V
RGP10K	500 ns	800 V
RGP10M	500 ns	1000 V

CASE OUTLINE

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

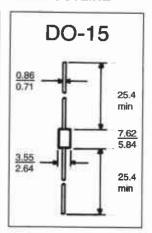
Ratings at 25°C ambient temperature and 10 mm lead length unless otherwise specified. Single-phase, half-wave, 50 Hz, resistive or inductive load.

Maximum Average Forward Rectified Current	1 A
Peak Forward Surge Current, 10 ms Single Half Sine Wave	30 A
Maximum Forward Voltage at 1 A _{DC}	1.3 V
Maximum Reverse Current at 25°C	5 μΑ
Maximum Reverse Current at 55°C	100 μΑ
Typical Junction Capacitance at 1.0 MHz and Reverse Voltage of 4.0 V _{DC}	15 pF
Typical Thermal Resistance	50°C/W
Operating Temperature Range	-65 to +175°C
Storage Temperature Range	−65 to +175°C

Fig. 2 — Forward derating curve

I₊ [A]
1.00
0.75
0.50
0.25
0.00
20 40 60 80 100 120 140 160 180 T_L [°C]

1,5 A Superectifier


50 to 1000 V / Fast Recovery

RGP15 Series

VOLTAGE AND REVERSE RECOVERY RATINGS

Туре	Maximum Reverse Recovery Time $I_F = .5 \text{ A}, I_R = 1 \text{ A}, I_{rr} = .25 \text{ A}$	Maximum Recurrent Peak Reverse Voltage
RGP15A	150 ns	50 V
RGP15B	150 ns	100 V
RGP15D	150 ns	200 V
RGP15G	150 ns	400 V
RGP15J	250 ns	600 V
RGP15K	500 ns	800 V
RGP15M	500 ns	1000 V

CASE OUTLINE

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature and 10 mm lead length unless otherwise specified. Single-phase, half-wave, 50 Hz, resistive or inductive load.

Maximum Average Forward Rectified Current	1.5 A
Peak Forward Surge Current, 10 ms Single Half Sine Wave	50 A
Maximum Forward Voltage at 1.5 A _{DC}	1.3 V
Maximum Reverse Current at 25°C	5 μΑ
Maximum Reverse Current at 55°C	100 μΑ
Typical Junction Capacitance at 1.0 MHz and Reverse Voltage of 4.0 V_{DC}	25 pF
Typical Thermal Resistance	40°C/W
Operating Temperature Range	−65 to +175°C
Storage Temperature Range	−65 to +175°C

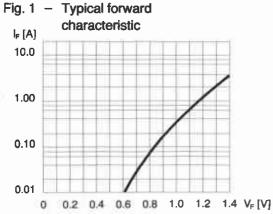
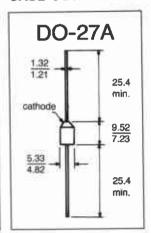


Fig. 2 - Forward derating curve I_F [A] 2.4 2.1 1.8 1.5 1.2 0.9 0.6 0.3 20 40 60 80 100 120 160 180 T_L [°C]

3 A Superectifier

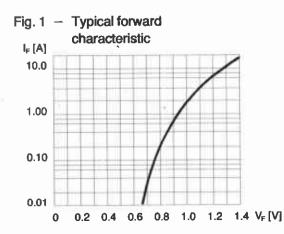

50 to 1000 V / Fast Recovery

RGP30 Series

VOLTAGE AND REVERSE RECOVERY RATINGS

Туре	Maximum Reverse Recovery Time $I_F = .5 \text{ A}, \ I_R = 1 \text{ A}, \ i_{rr} = .25 \text{ A}$	Maximum Recurrent Peak Reverse Voltage
RGP30A	150 ns	50 V
RGP30B	150 ns	100 V
RGP30D	150 ns	200 V
RGP30G	150 ns	400 V
RGP30J	250 ns	600 V
RGP30K	500 ns	800 V
RGP30M	500 ns	1000 V

CASE OUTLINE



MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature and 10 mm lead length unless otherwise specified. Single-phase, half-wave, 50 Hz, resistive or inductive load.

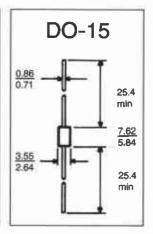
Maximum Average Forward Rectified Current	3 A
Peak Forward Surge Current, 10 ms Single Half Sine Wave	125 A
Maximum Forward Voltage at 3 A _{DC}	1.3 V
Maximum Reverse Current at 25°C	5 μΑ
Maximum Reverse Current at 55°C	100 μΑ
Typical Junction Capacitance at 1.0 MHz and Reverse Voltage of 4.0 V _{DC}	60 pF
Typical Thermal Resistance	25°C/W
Operating Temperature Range	-65 to +175°C
Storage Temperature Range	-65 to +175°C

RATING AND CHARACTERISTIC CURVES

SUPERECTIFIER 5

Fig. 2 - Forward derating curve I_F [A] 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 20 40 100 180 T_L [°C] 60 80 120 140 160

1.5 A Superectifier


200 to 800 V / Avalanche

AGP15 Series

VOLTAGE RATINGS

Туре	Maximum Recurrent Peak Reverse Voltage	Min. Avalanche Breakdown Voltage	Max. Avalanche Breakdown Voltage
AGP15-200	200 V	240 V	500 V
AGP15-400	400 V	450 V	750 V
AGP15-600	600 V	675 V	1000 V
AGP15-800	800 V	880 V	1200 V

CASE OUTLINE

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature and 10 mm lead length unless otherwise specified. Single-phase, half-wave, 50 Hz, resistive or inductive load.

Maximum Average Forward Rectified Current	1.5 A
Peak Forward Surge Current, 10 ms Single Half Sine Wave	50 A
Maximum Forward Voltage at 1.5 A	1.1 V
Maximum Reverse Current at 25°C	5.0 μ A
Maximum Reverse Current at 100°C	100 μΑ
Maximum Continuous Avalanche Power Dissipation	500 mW
Maximum Peak Avalanche Power Dissipation 20 μs Pulse	500 W
Typical Thermal Resistance	40°C/W
Operating Temperature Range	−65 to +175°C
Storage Temperature Range	-65 to +175°C

RATING AND CHARACTERISTIC CURVES

Fig. 1 — Typical forward characteristic

1.6 [A]
10.0

0.10

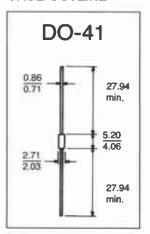
0.01

0.02 0.4 0.6 0.8 1.0 1.2 1.4 V_F[V]

SUPERECTIFIER [

Fig. 2 - Forward derating curve I_F [A] 2.4 2.1 1.8 1.5 1.2 0.9 0.6 0.3 0.0 20 40 60 80 100 120 140 160 180 T_L [°C]

Zener Superectifier


160 to 200 V/1 Watt

ZGP10 Series

VOLTAGE AND DYNAMIC IMPEDANCE RATINGS

Туре	Maximum Dynamic Impedance	Reverse Current Measurement Voltage	Zener Voltage
ZGP10-160	1100 Ω	120 V	160 V
ZGP10-170	1200 Ω	130 V	170 V
ZGP10-180	1300 Ω	140 V	180 V
ZGP10-190	1400 Ω	150 V	190 V
ZGP10-200	1500 Ω	160 V	200 V

CASE OUTLINE

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature and 10 mm lead length unless otherwise specified. Single-phase, half-wave, 50 Hz, resistive or inductive load.

Maximum Average Forward Rectified Current	1 A
Peak Forward Surge Current, 10 ms Single Half Sine Wave	30 A
Maximum Forward Voltage at 0.5 A _{DC}	1.0 V
Maximum Reverse Current at 25°C	0.5 μΑ
Maximum Reverse Current at 100°C	100 μΑ
Maximum Non Recurrent Surge Power 20 μs Pulse	500 W
Typical Thermal Resistance	50°C/W
Operating Temperature Range	-65 to +175°C
Storage Temperature Range	-65 to +175°C

Fig. 1 - Non Recurrent Reverse Surge

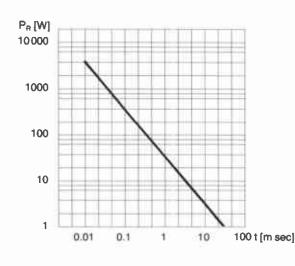
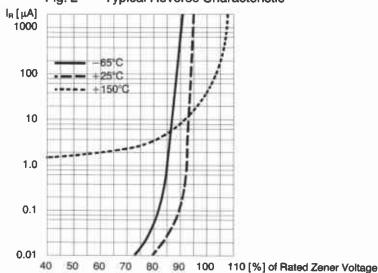
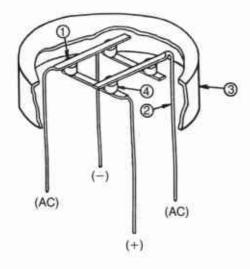



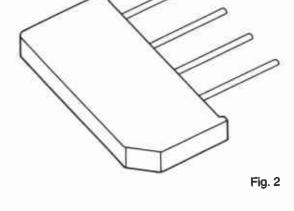
Fig. 2 - Typical Reverse Characteristic

0.5 to 35 Amperes

50 V to 1000 V

Families of General Instrument Bridge Rectifiers


Fig. 1


All types of rectifier cells, which are produced by GENERAL INSTRUMENT, are available in bridge configurations, molded in various plastic and metal packages.

The basic types of packages are

- Round Plastic Package (Fig. 1)
- IN-LINE Plastic Package (Fig. 2)
- Square Plastic/Metal Package for Chassis Mounting (Fig. 3)

These bridge families are available with different terminals, such as wire leads, FASTON or soldering lugs.

IN-LINE Bridge

ITEM DESCRIPTION

- Solder Preforms
- 2 Formed Leads
- 3 Case
- 4 Cell

Round Bridge

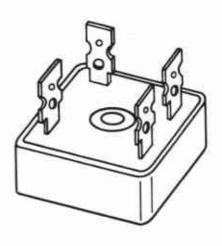


Fig. 3

Chassis Mounted Bridge

Silicon Miniature Single-Phase Bridge Rectifiers 0.5 to 2 AMP

Types:

WL005 (M)

thru WL10 (M)

W005 (M)

thru W10 (M)

2W005

thru 2W10

B40C500 (M) thru B250C500 (M)

B40C800 (M) thru B250C800 (M)

B40C1000 (M) thru B380C1000 (M)

B40C1500 thru B380C1500 B40C1500C thru B380C1500C

Features:

- Surge Overload Rating 50 and 100 Amperes Peak
- Ideal for Printed Circuit Board
- Reliable Low Cost Construction
- Silver Plated Copper Leads
- Available in Avalanche Characteristics

Silicon In-Line Single Phase Bridge Rectifiers 1.5 to 5 AMP

Types:

KBP005

thru KBP10

2KBP005

thru 2KBP10

KBF005

thru KBF10

KBL005

thru KBL08

B40C3700/2200 thru B380C3700/2200

B40C5000/3300 thru B380C5000/3300

Features:

- Surge Overload Rating up to 200 Amperes Peak
- Ideal for Printed Circuit Board
- Reliable Low Cost Construction utilizing molded Plastic
- Available in Avalanche Characteristics
- Silver Plated Copper Leads

High Current Single Phase Bridge Rectifiers 3 to 35 AMP

Types:

KBPC005 thru KBPC10 SUPERECTIFIER Construction

KBPC1005 thru KBPC1110 SUPERECTIFIER Construction

KBPC6005 thru KBPC610

KBPC6005t thru KBPC610t

KBPC8005 thru KBPC810

SUPERECTIFIER Construction

KBPC10005 thru KBPC1010

KBPC25005 thru KBPC2510

KBPC35005 thru KBPC3510

Features:

- High Capability of Surge Overload Rating
- Insulated Case
- Low Forward Voltage Drop
- Tinned Copper Leads
- Simple Installation thru Screw hole
- Available in Avalanche and Fast Recovery Characteristics
- For all kind of DC Motors.

QUICK GUIDE TO BRIDGE RECTIFIERS

I _o (A)	1.0	1.5	1.5	2.0	2.0	2.5	4.0	I _o (A)
@T _A (°C)	50	25	50	25	50	50	50	@T _A (°C)
SURGE (A)	30	50	50	50	50	150	200	SURGE (A)
V _B = 50 (V)	WL005 (M)	W005 (M)*	KBP005*	2W005	2KBP005	KBF005	KBL005	V _R = 50 (V)
V _R = 200 (V)	WL02 (M)	W02 (M)*	KBP02 *	2W02	2KBP02	KBF02	KBL02	V _R = 200 (V)
V _R = 400 (V)	WL04 (M)	W04 (M)*	KBP04 *	2W04	2KBP04	KBF04	KBL04	V _R = 400 (V)
V _R = 600 (V)	WL06 (M)	W06 (M)*	KBP06 *	2W06	2KBP06	KBF06	KBL06	V _R = 600 (V)
V _R = 800 (V)	WL08 (M)	W08 (M)*	KBP08 *	2W08	2KBP08	KBF08	KBL08	V _R = 800 (V)
V _R = 1000 (V)	WL10 (M)	W10 (M)*	KBP10 *	2W10	2KBP10	KBF10	KBL10	V _R = 1000 (V)
Page	87	88	90	89	91	92	93	Page

(M) indicates Miniature Package

QUICK GUIDE TO BRIDGE RECTIFIERS

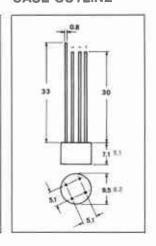
I _o (A)	3.0	3.0	6.0	6.0	8.0	10	25	35	I _o (A)
@T _c (°C)	50	50	100	100	50	60	60	60	@T _c (°C)
SURGE (A)	50	50	200	200	125	200	300	400	SURGE (A)
/ _R = 50 (V)	KBPC005	KBPC1005**	KBPC6005	KBPC6005t	KBPC8005®	KBPC10-005	KBPC25-005	KBPC35-005	V _R = 50 (V)
/ _B = 200 (V)	KBPC02 *	KBPC102 ■	KBPC602	KBPC602 t	KBPC802	KBPC10-02	KBPC25-02	KBPC35-02	V _R = 200 (V)
/ _B = 400 (V)	KBPC04 *	KBPC104 ■	KBPC604	KBPC604 t	KBPC804 *	KBPC10-04	KBPC25-04	KBPC35-04	V _R = 400 (V)
/ _B = 600 (V)	KBPC06 *	KBPC106 *	KBPC606	KBPC606 t	KBPC806 *	KBPC10-06	KBPC25-06	KBPC35-06	V _R = 600 (V)
$I_{\rm R} = 800 (V)$	KBPC08 *	KBPC108 *	KBPC608	KBPC608 t	KBPC808 *	KBPC10-08	KBPC25-08	KBPC35-08	V _R = 800 (V)
/ _R = 1000 (V)	KBPC10	KBPC110	KBPC610	KBPC610 t	KBPC810 ■	KBPC10-10	KBPC25-10	KBPC35-10	V _R = 1000 (V)
Page	96	97	98	99	100	101	102	103	Page

SUPERECTIFIER construction also available in Avalanche and Fast Recovery Characteristics.

QUICK GUIDE TO BRIDGE RECTIFIERS

Page	82	83	84	85	86	94	95	Page
V _{RMS} = 380 (V)	B380C500 (M)	B380C800 (M)	B380C1000 (M)	B380C1500	B380C1500 C	B380C3700/2200	B380C5000/3300	
V _{RMS} = 250 (V)	B250C500 (M)	B250C800 (M)	B250C1000 (M)	B250C1500			B250C5000/3300	
V _{RMS} = 125 (V)	B125C500 (M)	B125C800 (M)	B125C1000 (M)	B125C1500			B125C5000/3300	
V _{RMS} = 80 (V)	B80C500 (M)	B80C800 (M)	B80C1000 (M)	B80C1500	B80C1500 C	B80C3700/2200	B80C5000/3300	$V_{\text{PMS}} = 80 \text{ (V)}$
V _{RMS} = 40 (V)	B40C500 (M)	B40C800 (M)	B40C1000 (M)	B40C1500	B40C1500 C	B40C3700/2200	B40C5000/3300	$V_{RMS} = 40 (V)$
SURGE (A)	30	45	45	45	100	100	200	SURGE (A)
@T _A (°C)	45	45	45	45	45	45	45	@T _A (°C)
I _o (A)	0.5	0.8	1.0	1.5	1.5	3.7	5.0	I _o (A)

^{*} Also available in Avalanche Characteristic.


40 to 380 V_{RMS}

B 40C 500 B 80C 500 B125C 500 B250C 500 B380C 500

VOLTAGE RATINGS

CASE OUTLINE

Туре	Maximum RMS Voltage	Maximum Recurrent Peak Reverse Voltage
B 40C 500 (M)	40 V	100 V
B 80C 500 (M)	80 V	190 V
B125C 500 (M)	125 V	300 V
B250C 500 (M)	250 V	600 V
B380C 500 (M)	380 V	900 V
M indicates Miniature	Package	

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature and 10 mm lead length unless otherwise specified. Single-phase, half-wave, 50 Hz, resistive or inductive load.

Maximum Average Forward Rectified Current natural cooling, t _A = 45°C C-Load		0.5 A
	R+L-Load	0.6 A
Maximum Repetitive Peak Forward Current		6 A
Peak Forward Surge Current, 10 ms Single Half Sine Wave		30 A
I ² t Rating for fusing (t <10 ms)		$4.5 A^2 s$
Maximum Forward Voltage per Element		1.25 V
Maximum Reverse Current at 25°C		. 10 μA
Maximum Reverse Current at 125°C		1 mA
Operating Temperature Range		-55 to +125°C
Storage Temperature Range		-55 to +150°C

Fig. 1 — Typical forward characteristic

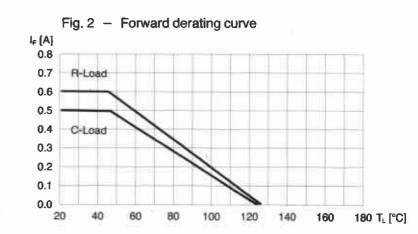
1.00

0.10

0.01

0.02

0.4

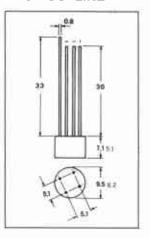

0.6

0.8

1.0

1.2

1.4 V_F[V]


40 to 380 V_{RMS}

B 40C 800 B 80C 800 B125C 800 B250C 800 B380C 800

VOLTAGE RATINGS

Maximum RMS Voltage Maximum Recurrent Type Peak Reverse Voltage B 40C 800 (M) 40 V 100 V B 80C 800 (M) 80 V 190 V B125C 800 (M) 125 V 300 V B250C 800 (M) 250 V 600 V B380C 800 (M) 380 V 900 V

CASE OUTLINE

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

M indicates Miniature Package

Ratings at 25°C ambient temperature and 10 mm lead length unless otherwise specified. Single-phase, half-wave, 50 Hz, resistive or inductive load.

Maximum Average Forward Rectified Current natural cooling, t _A = 45°C C-Load	0.8 A
R+L-Load	0.9 A
Maximum Repetitive Peak Forward Current	10 A
Peak Forward Surge Current, 10 ms Single Half Sine Wave	45 A
I ² t Rating for fusing (t <10 ms)	10 A ² s
Maximum Forward Voltage per Element	1.0 V
Maximum Reverse Current at 25°C	10 μΑ
Maximum Reverse Current at 125°C	1 mA
Operating Temperature Range	-55 to +125°C
Storage Temperature Range	-55 to +150°C

Fig. 1 — Typical forward characteristic

1.00

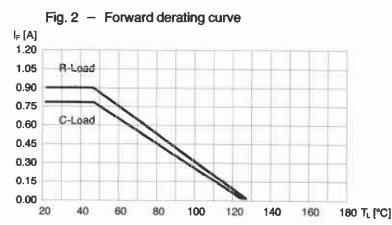
0.10

0.01

0.02

0.4

0.6

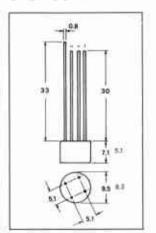

0.8

1.0

1.2

1.4

V_F[V]


40 to 380 V_{RMS}

B 40C 1000 B 80C 1000 B125C 1000 B250C 1000 B380C 1000

VOLTAGE RATINGS

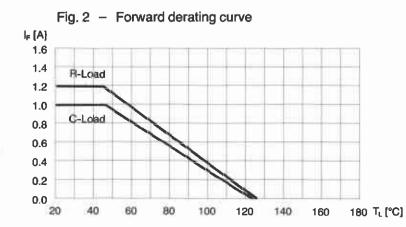
Maximum RM\$ Voltage **Maximum Recurrent** Type Peak Reverse Voltage 40 V 100 V B 40C 1000 (M) 190 V B 80C 1000 (M) 80 V 300 V 125 V B125C 1000 (M) B250C 1000 (M) 250 V 600 V B380C 1000 (M) 380 V 900 V M indicates Miniature Package

CASE OUTLINE

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature and 10 mm lead length unless otherwise specified. Single-phase, half-wave, 50 Hz, resistive or inductive load.

Maximum Average Forward Rectified Current natural cooling, t _A = 45°C C-Load		1.0 A
	R+L-Load	1.2 A
Maximum Repetitive Peak Forward Current		10 A
Peak Forward Surge Current, 10 ms Single Half Sine Wave		45 A
1^2 t Rating for fusing (t <10 ms)		10 A ² s
Maximum Forward Voltage per Element		1.0 V
Maximum Reverse Current at 25°C		10 μΑ
Maximum Reverse Current at 125°C		1 mA
Operating Temperature Range		-55 to +125°C
Storage Temperature Range		-55 to +150°C

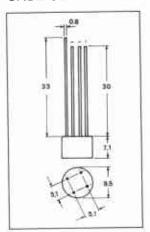

Fig. 1 — Typical forward characteristic

1.00

0.10

0.01

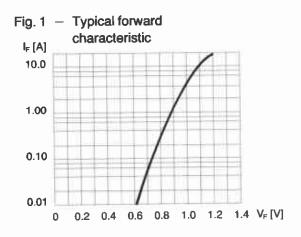
0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 V_F[V]

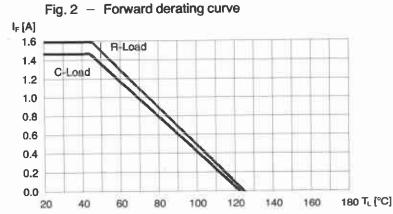

40 to 380 V_{RMS}

B 40C 1500 B 80C 1500 B125C 1500 B250C 1500 B380C 1500

VOLTAGE RATINGS

Туре	Maximum RMS Voltage	Maximum Recurrent Peak Reverse Voltage
B 40C 1500	40 V	100 V
B 80C 1500	80 V	190 V
B125C 1500	125 V	300 V
B250C 1500	250 V	600 V
B380C 1500	380 V	900 V

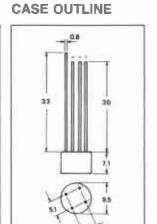

CASE OUTLINE



MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature and 10 mm lead length unless otherwise specified. Single-phase, half-wave, 50 Hz, resistive or inductive load.

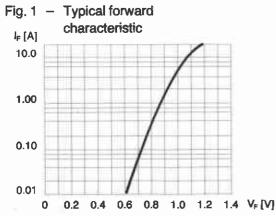
Maximum Average Forward Rectified Current natural cooling, t _A = 45°C C-Load		1.5 A
	R+L-Load	1.6 A
Maximum Repetitive Peak Forward Current		10 A
Peak Forward Surge Current, 10 ms Single Half Sine Wave		45 A
I ² t Rating for fusing (t <10 ms)		10 A ² s
Maximum Forward Voltage per Element		1.0 V
Maximum Reverse Current at 25°C		10 μΑ
Maximum Reverse Current at 125°C		1.0 mA
Operating Temperature Range		-55 to +125°C
Storage Temperature Range		−55 to +150°C

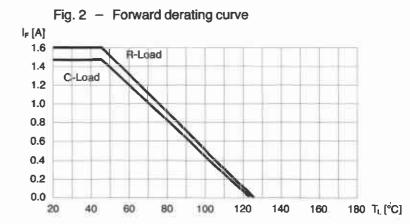


40 to 380 V_{RMS}

B 40C 1500C B 80C 1500C B125C 1500C B250C 1500C B380C 1500C

VOLTAGE RATINGS

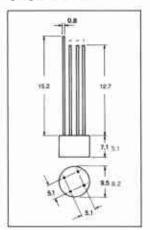

Туре	Maximum RMS Voltage	Maximum Recurrent Peak Reverse Voltage
B 40C 1500C	40 V	100 V
B 80C 1500C	80 V	190 V
B125C 1500C	125 V	300 V
B250C 1500C	250 V	600 V
B380C 1500C	380 V	900 V



MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature and 10 mm lead length unless otherwise specified. Single-phase, half-wave, 50 Hz, resistive or inductive load.

Maximum Average Forward Rectified Current natural cooling, t _A =	45°C C-Load	1.5 A
	R+L-Load	1.6 A
Maximum Repetitive Peak Forward Current		12 A
Peak Forward Surge Current, 10 ms Single Half Sine Wave		100 A
I ² t Rating for fusing (t <10 ms)		50 A ² s
Maximum Forward Voltage per Element		0.95 V
Maximum Reverse Current at 25°C		10 μΑ
Maximum Reverse Current at 125°C		1 mA
Operating Temperature Range		-55 to +125°C
Storage Temperature Range		-55 to +150°C


50 to 1000 V

WL Series

VOLTAGE RATINGS

Туре	Maximum RMS Voltage	Maximum Recurrent Peak Reverse Voltage
WL005 (M)	35 V	50 V
WL02 (M)	140 V	200 V
WL04 (M)	280 V	400 V
WL06 (M)	420 V	600 V
WL08 (M)	560 V	800 V
WL10 (M)	700 V	1000 V
M indicates Miniature Package		

CASE OUTLINE

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25° C ambient temperature and 10 mm lead length unless otherwise specified. Single-phase, half-wave, 50 Hz, resistive or inductive load.

Maximum Average Forward Rectified Current	1.0 A
Peak Forward Surge Current, 10 ms Single Half Sine Wave	30 A
Maximum Forward Voltage per Element at 1 A _{DC}	1.2 V
Maximum Reverse Current at 25°C	10 μΑ
Maximum Reverse Current at 100°C	1.0 mA
I ² t Rating for fusing (t <10 ms)	4.5 A ² s
Typical Thermal Resistance R _{th J-A}	25 °C/W
Operating Temperature Range	−55 to +125°C
Storage Temperature Range	−55 to +150°C

Fig. 1 — Typical forward characteristic

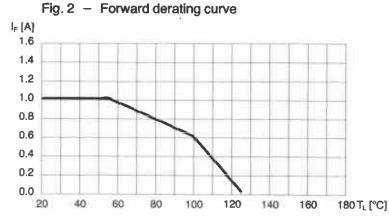
1.00

0.10

0.01

0.02

0.4

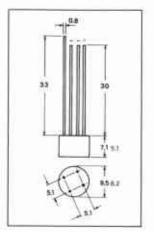

0.6

0.8

1.0

1.4

V_F[V]


50 to 1000 V

w Series

VOLTAGE RATINGS

Туре		Maximum RMS Voltage	Maximum Recurrent Peak Reverse Voltage
W005	(M)	35 V	50 V
W02	(M)	140 V	200 V
W 04	(M)	280 V	400 V
W06	(M)	420 V	600 V
W08	(M)	560 V	800 V
W10	(M)	700 V	1000 V
	M indicates Miniature Package	Suffix A indicates Avalanche Characteristi	c.

CASE OUTLINE

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25° C ambient temperature and 10 mm lead length unless otherwise specified. Single-phase, half-wave, 50 Hz, resistive or inductive load.

Maximum Average Forward Rectified Current	1.5 A
Peak Forward Surge Current, 10 ms Single Half Sine Wave	50 A
Maximum Forward Voltage per Element at 1 A _{DC}	1.0 V
Maximum Reverse Current at 25°C	10 μΑ
Maximum Reverse Current at 100°C	1.0 mA
I ² t Rating for fusing (t <10 ms)	5 A ² s
Typical Thermal Resistance R _{th J-A}	25 °C/W
Operating Temperature Range	-55 to +125°C
Storage Temperature Range	-55 to +150°C

Fig. 1 — Typical forward characteristic

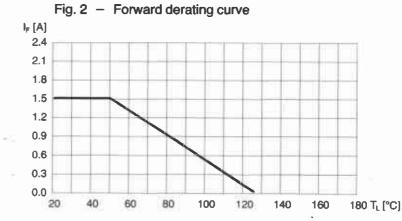
1.00

0.10

0.01

0.02

0.4

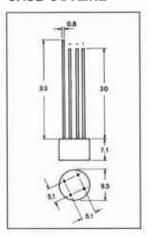

0.6

0.8

1.0

1.2

1.4 V_F[V]


50 to 1000 V

2W Series

VOLTAGE RATINGS

Туре	Maximum RMS Voltage	Maximum Recurrent Peak Reverse Voltage
2W005	35 V	50 V
2W02	140 V	200 V
2W04	280 V	400 V
2W06	420 V	600 V
2W08	560 V	800 V
2W10	700 V	1000 V

CASE OUTLINE

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature and 10 mm lead length unless otherwise specified. Single-phase, half-wave, 50 Hz, resistive or inductive load.

Maximum Average Forward Rectified Current	2.0 A
Peak Forward Surge Current, 10 ms Single Half Sine Wave	50 A
Maximum Forward Voltage per Element at 1 A _{DC}	1.0 V
Maximum Reverse Current at 25°C	10 μΑ
Maximum Reverse Current at 100°C	1 mA
I ² t Rating for fusing (t <10 ms)	5 A ² s
Typical Thermal Resistance R _{th J-A}	25 °C/W
Operating Temperature Range	-55 to +125°C
Storage Temperature Range	-55 to +150°C

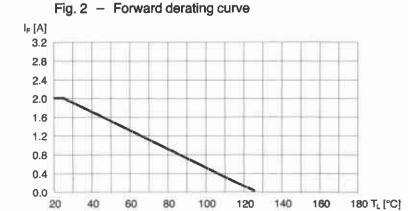
Fig. 1 — Typical forward characteristic

1.00

0.10

0.01

0.02


0.4

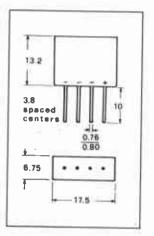
0.6

0.8

1.0

1.4 V_F[V]

50 to 1000 V


KBP Series

VOLTAGE RATINGS

Suffix A indicates Avalanche Characteristic

Maximum RMS Voltage Type Maximum Recurrent Peak Reverse Voltage **KBP005** 35 V 50 V KBP02 140 V 200 V KBP04 280 V 400 V KBP06 420 V 600 V KBP08 560 V 800 V KBP10 700 V 1000 V

CASE OUTLINE

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature and 10 mm lead length unless otherwise specified. Single-phase, half-wave, 50 Hz, resistive or inductive load.

Maximum Average Forward Rectified Current	1.5 A
Peak Forward Surge Current, 10 ms Single Half Sine Wave	50 A
Maximum Forward Voltage per Element at 1 A _{DC}	1.0 V
Maximum Reverse Current at 25°C	10 μΑ
Maximum Reverse Current at 100°C	1 mA
I ² t Rating for fusing (t <10 ms)	5 A ² s
Typical Thermal Resistance R _{th J-A}	25 °C/W
Operating Temperature Range	−55 to +125°C
Storage Temperature Range	−55 to +150°C

Fig. 1 — Typical forward characteristic

1, [A]
10.0

1.00

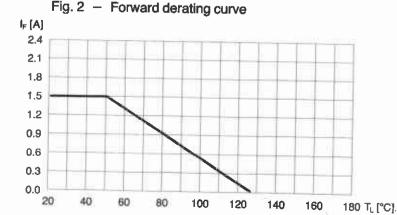
0.10

0.01

0.02

0.4

0.6

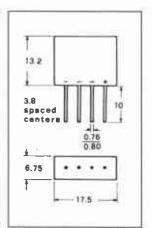

0.8

1.0

1.2

1.4

V_F[V]


50 to 1000 V

2KBP Series

VOLTAGE RATINGS

Туре	Maximum RMS Voltage	Maximum Recurrent Peak Reverse Voltage
2KBP005	35 V	50 V
2KBP02	140 V	200 V
2KBP04	280 V	400 V
2KBP06	420 V	600 V
2KBP08	560 V	800 V
2KBP10	700 V	1000 V

CASE OUTLINE

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature and 10 mm lead length unless otherwise specified. Single-phase, half-wave, 50 Hz, resistive or inductive load.

Maximum Average Forward Rectified Current	2 A
Peak Forward Surge Current, 10 ms Single Half Sine Wave	50 A
Maximum Forward Voltage per Element at 1 A _{DC}	1.0 V
Maximum Reverse Current at 25°C	10 μΑ
Maximum Reverse Current at 100°C	1.0 mA
I ² t Rating for fusing (t <10 ms)	5 A ² s
Typical Thermal Resistance R _{th J-A}	25 °C/W
Operating Temperature Range	-55 to +125°C
Storage Temperature Range	−55 to +150°C

Fig. 1 — Typical forward characteristic

1.00

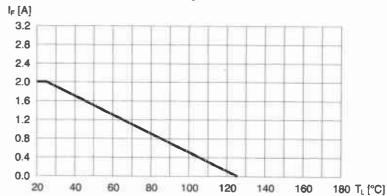
0.10

0.01

0.02

0.4

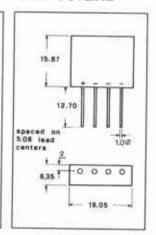
0.6


0.8

1.0

1.2

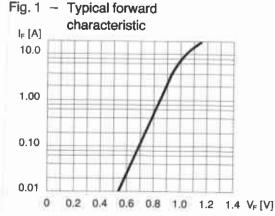
1.4 V_F[V]

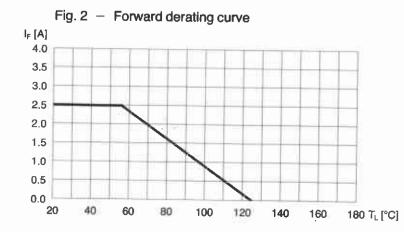

50 to 1000 V

KBF Series

VOLTAGE RATINGS

Maximum RMS Voltage	Maximum Recurrent Peak Reverse Voltage
35 V	50 V
140 V	200 V
280 V	400 V
420 V	600 V
560 V	800 V
700 V	1000 V
	35 V 140 V 280 V 420 V 560 V

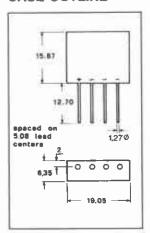

CASE OUTLINE



MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature and 10 mm lead length unless otherwise specified. Single-phase, half-wave, 50 Hz, resistive or inductive load.

Storage Temperature Range	−55 to +150°C
Operating Temperature Range	−55 to +125°C
Typical Thermal Resistance R _{th J-A}	15 °C/W
I ² t Rating for fusing (t <10 ms)	112 A ² s
Maximum Reverse Current at 100°C	1.0 mA
	10 μΑ
Maximum Reverse Current at 25°C	1.2 V
Maximum Forward Voltage per Element at 2.5 Apc	
Peak Forward Surge Current, 10 ms Single Half Sine Wave	150 A
Maximum Average Forward Rectified Current	2.5 A

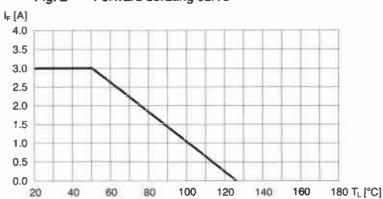

50 to 1000 V

KBL Series

VOLTAGE RATINGS

Туре	Maximum RMS Voltage	Maximum Recurrent Peak Reverse Voltage
KBL005	35 V	50 V
KBL02	140 V	200 V
KBL04	280 V	400 V
KBL06	420 V	600 V
KBL08	560 V	800 V
KBL10*	700 V	1000 V
*Limited Production		

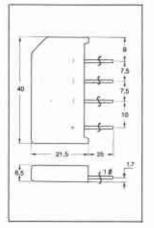
CASE OUTLINE


MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature and 10 mm lead length unless otherwise specified. Single-phase, half-wave, 50 Hz, resistive or inductive load.

Maximum Average Forward Rectified Current	3 A
Peak Forward Surge Current, 10 ms Single Half Sine Wave	200 A
Maximum Forward Voltage per Element at 3 A _{DC}	1.2 V
Maximum Reverse Current at 25°C	10 μΑ
Maximum Reverse Current at 100°C	1 mA
1 ² t Rating for fusing (t <10 ms)	200 A ² s
Typical Thermal Resistance R _{th J-A}	15 °C/W
Operating Temperature Range	−55 to +150°C
Storage Temperature Range	-55 to +150°C

Fig. 1 - Typical forward characteristic I_F [A] 10.0 1.00 0.10 0.01


40 to 380 V_{RMS}

B 40C 3700/2200 B 80C 3700/2200 B125C 3700/2200 B250C 3700/2200 B380C 3700/2200

VOLTAGE RATINGS

Туре	Maximum RMS Voltage	Maximum Recurrent Peak Reverse Voltage
B 40C 3700/2200	40 V	100 V
B 80C 3700/2200	80 V	190 V
B125C 3700/2200	125 V	300 V
B250C 3700/2200	250 V	600 V
B380C 3700/2200	380 V	900 V

CASE OUTLINE

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25° C ambient temperature and 10 mm lead length unless otherwise specified. Single-phase, half-wave, 50 Hz, resistive or inductive load.

Maximum Average Forward Rectified Current natural cooling, t _A = 45°C C-Load	2.2 A
R+L-Load	2.7 A
on chassis = 200 cm^2 ; $t_A = 45^{\circ}\text{C C-Load}$	3.7 A
R+L-Load	4.8 A
Maximum Repetitive Peak Forward Current	15 A
Peak Forward Surge Current, 10 ms Single Half Sine Wave	100 A
I ² t Rating for fusing (t <10 ms)	50 A ² s
Maximum Forward Voltage per element	1.0 V
Maximum Reverse Current at 25°C	10 μΑ
Maximum Reverse Current at 150°C	6 mA
Operating Temperature Range	-55 to +150°C
Storage Temperature Range	-55 to +150°C

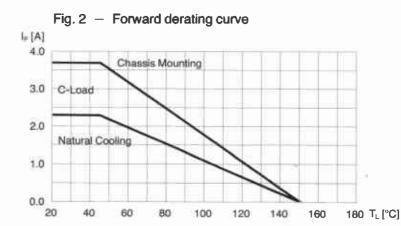
Fig. 1 — Typical forward characteristic

1.00

0.10

0.01

0.02

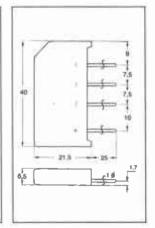

0.4

0.8

1.0

1.4

V_F[V]


40 to 380 V_{RMS}

B 40C 5000/3300 B 80C 5000/3300 B125C 5000/3300 B250C 5000/3300 B380C 5000/3300

VOLTAGE RATINGS

Туре	Maximum RMS Voltage	Maximum Recurrent Peak Reverse Voltage
B 40C 5000/3300	40 V	100 V
B 80C 5000/3300	80 V	190 V
B125C 5000/3300	125 V	300 V
B250C 5000/3300	250 V	600 V
B380C 5000/3300	380 V	900 V

CASE OUTLINE

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25° C ambient temperature and 10 mm lead length unless otherwise specified. Single-phase, half-wave, 50 Hz, resistive or inductive load.

Maximum Average Forward Rectified Current natural cooling, t _A = 45°C C-Load	3.3 A
R+L-Load	4.0 A
on chassis = 200 cm ² ; $t_A = 45$ °C C-Load	5.0 A
R+L-Load	6.0 A
Maximum Repetitive Peak Forward Current	30 A
Peak Forward Surge Current, 10 ms Single Half Sine Wave	250 A
I ² t Rating for fusing (t <10 ms)	312 A ² s
Maximum Forward Voltage per element	1.0 V
Maximum Reverse Current at 25°C	10 μΑ
Maximum Reverse Current at 150°C	6 mA
Operating Temperature Range	−55 to +150°C
Storage Temperature Range	−55 to +150°C

Fig. 1 — Typical forward characteristic

1.00

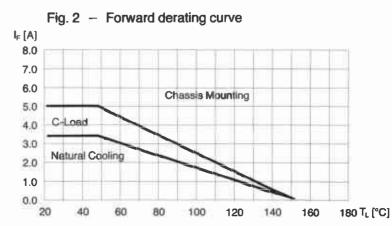
0.10

0.01

0.02

0.4

0.6

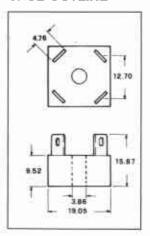

0.8

1.0

1.2

1.4

V_F[V]


50 to 1000 V

KBPC Series

VOLTAGE RATINGS

Туре	Maximum RMS Voltage	Maximum Recurrent Peak Reverse Voltage
KBPC005	35 V	50 V
KBPC02	140 V	200 V
KBPC04	280 V	400 V
KBPC06	420 V	600 V
KBPC08	560 V	800 V
KBPC10	700 V	1000 V

CASE OUTLINE

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature and 10 mm lead length unless otherwise specified. Single-phase, half-wave, 50 Hz, resistive or inductive load.

Maximum Average Forward Rectified Current	3.0 A
Peak Forward Surge Current, 10 ms Single Half Sine Wave	50 A
Maximum Forward Voltage per Element at 1.5 Apc	1.1 V
Maximum Reverse Current at 25°C	10 μΑ
Maximum Reverse Current at 100°C	1 mA
l^2 t Rating for fusing (t <10 ms)	12.5 A ² s
Typical Thermal Resistance R _{th J-C}	12.5 °C/W
Operating Temperature Range	−55 to +125°C
Storage Temperature Range	-55 to +150°C

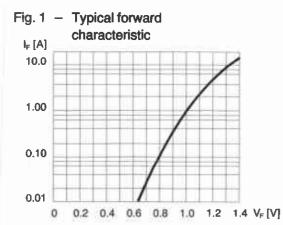
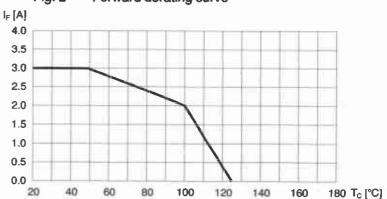
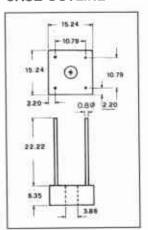



Fig. 2 - Forward derating curve


50 to 1000 V

KBPC1 Series

VOLTAGE RATINGS

	Mariana DMC Valence	Maximum Recurrent
Туре	Maximum RMS Voltage	Peak Reverse Voltage
KBPC1 005	35 V	50 V
KBPC1 02	140 V	200 V
KBPC1 04	280 V	400 V
KBPC1 06	420 V	600 V
KBPC1 08	560 V	800 V
KBPC1 10	700 V	1000 V
Also available in Avalanche and Fast Recove	ery Characteristics.	

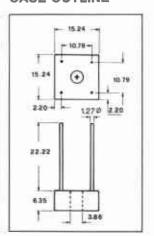
CASE OUTLINE

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature and 10 mm lead length unless otherwise specified. Single-phase, half-wave, 50 Hz, resistive or inductive load.

Maximum Average Forward Rectified Current	3.0 A
Peak Forward Surge Current, 10 ms Single Half Sine Wave	50 A
Maximum Forward Voltage per Element at 1 A _{DC}	1.0 V
Maximum Reverse Current at 25°C	10 μΑ
Maximum Reverse Current at 100°C	1 mA
I ² t Rating for fusing (t <10 ms)	12.5 A ² s
Typical Thermal Resistance R _{th J-C}	15 °C/W
Operating Temperature Range	−55 to +125°C
Storage Temperature Range	−55 to +150°C

Fig. 2 - Forward derating curve $I_F[A]$ 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 180 Tc [°C] 140 160 120 20 40 60 80 100


50 to 1000 V

KBPC6 Series

VOLTAGE RATINGS

Туре	Maximum RMS Voltage	Maximum Recurrent Peak Reverse Voltage
KBPC6 005	35 V	50 V
KBPC6 02	140 V	200 V
KBPC6 04	280 V	400 V
KBPC6 06	420 V	600 V
KBPC6 08	560 V	800 V
KBPC6 10	700 V	1000 V

CASE OUTLINE

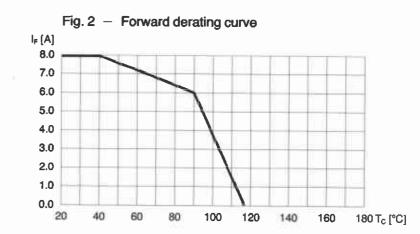
MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature and 10 mm lead length unless otherwise specified. Single-phase, half-wave, 50 Hz, resistive or inductive load.

Maximum Average Forward Rectified Current	8 A
Peak Forward Surge Current, 10 ms Single Half Sine Wave	125 A
Maximum Forward Voltage per Element at 3 A _{DC}	1.2 V
Maximum Reverse Current at 25°C	10 μΑ
Maximum Reverse Current at 100°C	1 mA
I ² t Rating for fusing (t <10 ms)	78 A ² s
Typical Thermal Resistance R _{th J-C}	5 °C/W
Operating Temperature Range	-55 to +125°C
Storage Temperature Range	-55 to +125°C

Fig. 1 — Typical forward characteristic

1,_F [A]

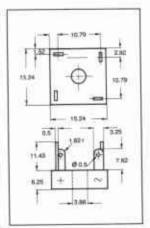

10.0

1.00

0.10

0.01

0.02 0.4 0.6 0.8 1.0 1.2 1.4 V_F[V]


50 to 1000 V

KBPC6t Series

VOLTAGE RATINGS

	Туре	Maximum RMS Voltage	Maximum Recurrent Peak Reverse Voltage
	KBPC6 005t	35 V	50 V
l	KBPC6 02t	140 V	200 V
l	KBPC6 04t	280 V	400 V
l	KBPC6 06t	420 V	600 V
l	KBPC6 08t	560 V	800 V
	KBPC6 10t	700 V	1000 V
1			

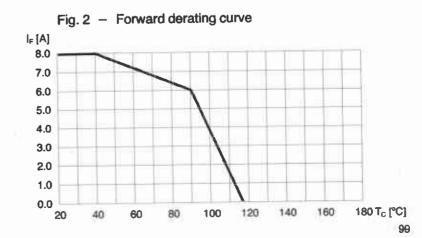
CASE OUTLINE

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature and 10 mm lead length unless otherwise specified. Single-phase, half-wave, 50 Hz, resistive or inductive load.

Maximum Average Forward Rectified Current	8 A
Peak Forward Surge Current, 10 ms Single Half Sine Wave	125 A
Maximum Forward Voltage per Element at 3 A _{DC}	1.2 V
Maximum Reverse Current at 25°C	10 μΑ
Maximum Reverse Current at 100°C	1 mA
I ² t Rating for fusing (t <10 ms)	78 A ² s
Typical Thermal Resistance R _{th.J-C}	5 °C/W
Operating Temperature Range	-55 to +125°C
Storage Temperature Range	-55 to +125°C

Fig. 1 — Typical forward characteristic

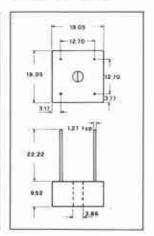

1_F[A]

1.00

0.10

0.01

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 V_F[V]


50 to 1000 V

KBPC8 Series

VOLTAGE RATINGS

	Maximum RMS Voltage	Maximum Recurrent	
Type	-	Peak Reverse Voltage	
KBPC8 005	35 V	50 V	
KBPC8 02	140 V	200 V	
KBPC8 04	280 V	400 V	
KBPC8 06	420 V	600 V	
KBPC8 08	560 V	800 V	
KBPC8 10	700 V	1000 V	
Also available in Avalanche and Fast Recov	very Characteristics.		

CASE OUTLINE

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature and 10 mm lead length unless otherwise specified. Single-phase, half-wave, 50 Hz, resistive or inductive load.

Maximum Average Forward Rectified Current	8 A
Peak Forward Surge Current, 10 ms Single Half Sine Wave	125 A
Maximum Forward Voltage per Element at 3 A _{OC}	1.2 V
Maximum Reverse Current at 25°C	10 μΑ
Maximum Reverse Current at 100°C	1.0 mA
I ² t Rating for fusing (t <10 ms)	78 A ² s
Typical Thermal Resistance R _{th J-C}	5 °C/W
Operating Temperature Range	-55 to +125°C
Storage Temperature Range	-55 to +150°C

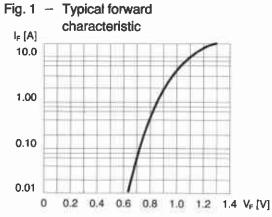
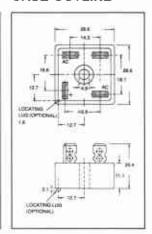


Fig. 2 - Forward derating curve I_F [A] 8.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0 0.0 20 40 60 80 100 120 140 160 180 Tc [°C]


50 to 1000 V

KBPC10 Series

VOLTAGE RATINGS

Туре	Maximum RMS Voltage	Maximum Recurrent Peak Reverse Voltage
KBPC10 005	35 V	50 V
KBPC10 02	140 V	200 V
KBPC10 04	280 V	400 V
KBPC10 06	420 V	600 V
KBPC10 08	560 V	800 V
KBPC10 10*	700 V	1000 V
*Limited Production		

CASE OUTLINE

Suffix indication: D Insulated Case L Position Lug W Wire Leads

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

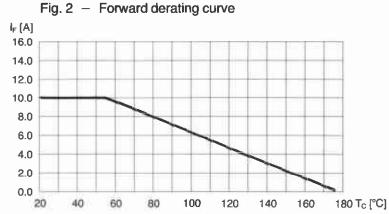
Ratings at 25°C ambient temperature and 10 mm lead length unless otherwise specified. Single-phase, half-wave, 50 Hz, resistive or inductive load.

Maximum Average Forward Rectified Current	10 A
Peak Forward Surge Current, 10 ms Single Half Sine Wave	200 A
Maximum Forward Voltage per Element at 5 A _{DC}	1.2 V
Maximum Reverse Current at 25°C	10 μΑ
Maximum Reverse Current at 100°C	1 mA
I ² t Rating for fusing (t <10 ms)	200 A ² s
Typical Thermal Resistance R _{th J-C}	2.5 °C/W
Operating Temperature Range	−65 to +175°C
Storage Temperature Range	−65 to +175°C

RATING AND CHARACTERISTIC CURVES

characteristic

100

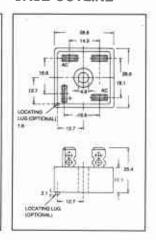

10

1
1

0.2 0.4 0.6 0.8 1.0 1.2 1.4 V_F[V]

Fig. 1 - Typical forward

0

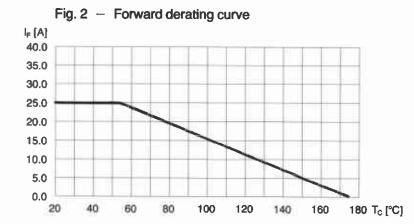

50 to 1000 V

KBPC25 Series

VOLTAGE RATINGS

Туре	Maximum RMS Voltage	Maximum Recurrent Peak Reverse Voltage
KBPC25 005	35 V	50 V
KBPC25 02	140 V	200 V
KBPC25 04	280 V	400 V
KBPC25 06	420 V	600 V
KBPC25 08	560 V	800 V
KBPC25 10*	700 V	1000 V
*Limited Production		

CASE OUTLINE

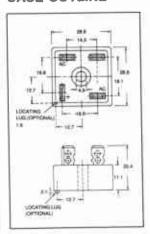

Suffix indication: D Insulated Case L Position Lug W Wire Leads

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature and 10 mm lead length unless otherwise specified. Single-phase, half-wave, 50 Hz, resistive or inductive load.

Maximum Average Forward Rectified Current	25 A
Peak Forward Surge Current, 10 ms Single Half Sine Wave	300 A
Maximum Forward Voltage per Element at 12.5 Apc	1.2 V
Maximum Reverse Current at 25°C	10 μΑ
Maximum Reverse Current at 100°C	1.0 mA
I ² t Rating for fusing (t <10 ms)	450 A ² s
Typical Thermal Resistance R _{th J-C}	2.5 °C/W
Operating Temperature Range	-65 to +175°C
Storage Temperature Range	−65 to +175°C

Fig. 1 - Typical forward characteristic I_E [A] 100 10 0.1 0.2 0.4 0.6 0.8 1.0 1.2 1.4 V_F[V]

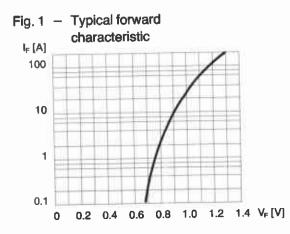

50 to 1000 V

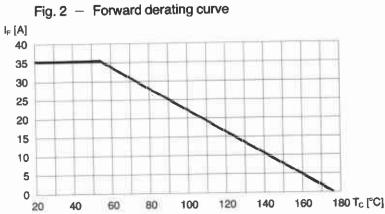
KBPC35 Series

VOLTAGE RATINGS

Туре	Maximum RMS Voltage	Maximum Recurrent Peak Reverse Voltage		
KBPC35 005	35 V	50 V		
KBPC35 02	140 V	200 V		
KBPC35 04	280 V	400 V		
KBPC35 06	420 V	600 V		
KBPC35 08*	560 V	800 V		
KBPC35 10*	700 V	1000 V		
*Limited Production				

CASE OUTLINE




Suffix indication: D Insulated Case L Position Lug W Wire Leads

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature and 10 mm lead length unless otherwise specified. Single-phase, half-wave, 50 Hz, resistive or inductive load.

Maximum Average Forward Rectified Current	35 A
Peak Forward Surge Current, 10 ms Single Half Sine Wave	400 A
Maximum Forward Voltage per Element at 17.5 A _{DC}	1.2 V
Maximum Reverse Current at 25°C	10 μΑ
Maximum Reverse Current at 100°C	1.0 mA
1 ² t Rating for fusing (t <10 ms)	800 A ² s
Typical Thermal Resistance R _{th J-C}	2.5 °C/W
· ·	-65 to +175°C
Operating Temperature Range	-65 to +175°C
Storage Temperature Range	

Quality Assurance

Customer Information

Introduction

Quality and Reliability Engineering of the Discrete Semiconductor Division extends its services to the areas of materials and product analysis, reliability evaluation, quality inspection and development of new test methods.

Headquartered in New York, it assumes the responsibility for the development, implementation and administration of the Quality Assurance programs for all operations of the Division, both domestic and foreign.

Additionally at our manufacturing plants, rigid and extensive in-process quality controls are utilized such that the quality and reliability of our products are consistent and repeatable. The laboratories of our facilities are equipped with the latest high-level instrumentation and staffed with skilled technicians and engineers.

Professional expertise and the most modern scientific equipment maintains our position of excellence and leadership as the foremost producer of semiconductor devices, and assures that the quality levels of our products, from inspection and test of raw materials to final approval of completed devices, meet the highest standards of the industry.

We offer . . .

- Top-flight specialists and modern facilities.
- Experienced Test Engineers and Reliability Engineers.
- A fully equipped laboratory able to perform almost any type of scientific investigation.

Services of the Materials and Device Analysis Section

- Testing, inspection and evaluation of materials and products utilizing the facilities of the electrical, mechanical, high-reliability and chemical analysis departments of our laboratories.
- Research and development of testing methods.
- Inspection of materials to ensure compliance by suppliers and contractors to specifications.
- Failure analysis to determine the cause of breakdown in materials or components.
- Qualification testing of military devices in accordance with applicable military specifications. The laboratories are qualified to perform testing to MIL-S-19500, MIL-STD-750, MIL-STD-202, and also are qualified to MIL-STD-883 tests under MIL-M-38510. Qualification approvals (QPL listing) were awarded by the United States, Canadian and West German Departments of Defense.
- A continuing program of military reliability (JAN-TX) also is in progress to assure conformance to the requirements for aerospace and the military.

Operational Life

Conditions: Rated voltage, rated current,

for 1000 hours at 25°C.

Solderability

Conditions: 95 % coverage within 1.2 mm of device body.

DC Blocking

Conditions: Rated voltage for 1000 hours at

100°C in inert environment.

Temperature Cycling

Conditions: -65° C to $+175^{\circ}$ C.

Storage Life

Conditions: 100°C for 1000 hours in inert environment.

Shock

Conditions: 5 blows of 1500 g's.

Lead Pull

Conditions: Axial pull to destruction.

Vibration (Constant)

Conditions: 20 g's at 60 Hz ±20 Hz.

Lead Fatigue

Conditions: Number of 90-degree bends with 0.5 kg weight attached to lead.

Acceleration

Conditions: 20,000 g's.

Moisture Resistance

Conditions: 85°C, 85 % Relative Humidity for 10 days.

Salt Atmosphere

Conditions: 5% solution for 24 hours at 35°C.

Flammability

Conditions: Encapsulating compound, General Instrument's proprietary formulas, GI-4B or GI-5A is self-

extinguishing, recognized and registered by Underwriters' Laboratories, U.S.

Moisture Capabilities of Diodes, Rectifiers, and Bridges

Conditions: T_a = 25°C to 85°C in Operating Mode Suitability Tested by Reverse Leakage Current at Rated Voltage

	Yearly /	Average			
Device	≥ 95 % RH	≥ 85 % RH	100 % RH 30 Days Continuous	95 % RH 30 Days Continuous	Balance Occasiona 100 % RH
GPD					
GPR	-				
GP10					
GP15					
GP20					
GP30					
DQ41					-
WO/WL Series					
KBP Series					
KBPC Series	-				
KBL Series					

Description of HI-REL Test Capabilities

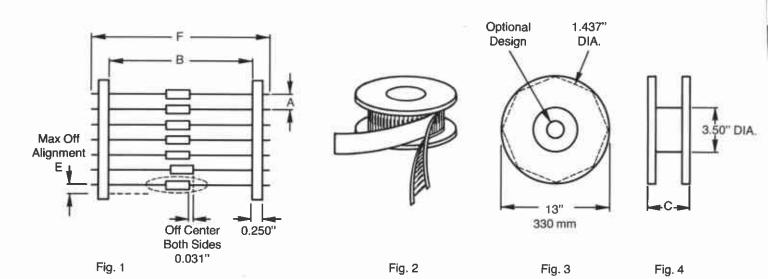
- Barometric Pressure: This equipment simulates low atmospheric pressure encountered in non-pressurized environments up to 200,000 feet.
- Humidity: This equipment evaluates units in an accelerated manner, and monitors the effects of their resistance to high humidity and heat conditions. Typical RH of 90 to 98 % is achieved.
- Salt (Spray) and Salt Atmosphere: The equipment provides an accelerated laboratory corrosion test simulating the effects of seacoast atmospheres. Salt concentration and velocity per day can be maintained between 10,000 and 50,000 mgm/m²/day. Salt Atmosphere Salt spray 5 % 20 % salt solution.
- Thermal Shock Temp.-Cycling: This test determines the resistance of devices to exposure at extremely high and low temperatures. Chamber limits -74°C to 250°C.
- Mass Spectrometer Leak Detector (Fine Leak): To determine the effectiveness (or the hermeticity) of the seal on devices with internal cavities which are evacuated or contain air or gas. Machine limits 1 · 10⁻⁹ to 10 · 10⁻⁶ atm.
- Gross Leak: Determine seal leak greater than 10 · 10⁻⁶ ATM cc/Sec.
- Constant Acceleration: Determines the effects of a centrifugal force on devices up to 700,000 g under space environment (refrigerated vacuum).
- Shock: Subjects the devices to conditions resulting from sudden applied forces or abrupt changes in motion produced by rough handling, transportation or field operation from 10 to 4,500 g.
- Vibration Fatigue: Tests the effects of vibration within the frequency range of 60 Hz at 0-70 g.
- Vibration Noise: Measures the amount of electrical noise produced by the devices under vibration from 0-5 kHz and 0-70 g.
- Vibration Variable Frequency: Tests the effect of the devices to vibration in specified frequency ranges from 0-5 kHz at 0-70 g.
- Non-Operating Life: To determine the effects on devices at elevated temperatures. Temperature ranges up to 300°C.
- Operating Life Test: To operate the devices under intended condition to screen and eliminate marginal devices and eliminate mortality.
 - Steady State Operating Life.
 - Reverse Bias Operating Life.
 - Intermittent Operating Life.
- Solderability Lead Integrity (Lead Tension): Determine the solderability on all devices from 0 to 400°C. Lead Tension – Designed to check the capabilities of the devices to withstand straight pulls.
- Lead Integrity (bending stress): Check the quality of leads, welds and seals of the devices to withstand bends under specific weights.
- Lead Integrity (lead torque): Check the devices, leads and seals for resistance to twisting motion. Equipment limits from .5 cmkg to 100 mkg.
- Hi-Power Microscopic Inspection: Examine internal and external construction of our devices up to 600 times.
- Bond Strength: This determines strength of lead bonding between the active area of the device and connecting package leads.

HI-Reliability, Military, JAN and JANTX Devices

Where application demand higher reliability parts than our normal commercial units, there are two categories of product screening which are available as a stock item: JAN and JANTX. When reliability classes are required for use in military applications, on other very critical areas which are not for military use but require same special processing the JAN and JANTX devices are available. Where possible it is advantageous to specify a JAN or JANTX device rather than a special screening procedure because the JAN and JANTX parts are already processed as a standard stock item and do not place an additional load on the factory as will a small speciality requirement.

Reliability of each individual JAN and JANTX lot is accepted when sample tested, versus a commercial lot where a product line is tested for reliability on a periodic basis. JAN devices are processed according to a sample basis, where JANTX devices have 100 % processing and conditioning prior to release to the customer. Both JAN and JANTX devices are lot accepted by undergoing tests including electrical, solderability, thermal shock, terminal strength, moisture resistance, shock, vibration, acceleration, salt atmosphere, surge, storage and operating life. JAN parts are inspected electrically and shipped to the customer. All JANTX devices go through an additional environmental screening consisting of:

- Stabilization Bake for a minimum of 24 hours.
- Temperature Cycling of 10 complete cycles.
- Acceleration of 20,000 G's.
- Fine Leak.
- Gross Leak.


- Initial Electrical with data.
- Operating Life Burn-In for a minimum of 96 hours.
- Post Electrical with data.
- Delta Calculations on leakage current and forward voltage drop.

These devices are being processed on a daily ongoing basis. This in turn makes for a hi-reliability 100 % screened part readily available as an off-the-self item. A list of available parts and their packages is seen on page 49 under Glass Passivated Rectifier.

REEL PACKAGING (Standard Specification)

COMPONENT CASE TYPE	UNITS PER REEL	ITS PER SPA		COMPONENT TAPE SPACING SPACING "A" FIG. 1 "B" FIG. 1		APPROX. REEL DIMENSION "C" FIG. 4		MAX OFF ALIGNMENT "E" FIG. 1		APPROX. GROSS WEIGHT PER REEL PACKED	
		in.	mm	in.	mm	ln.	mm	in.	mm	lbs.	kg.
DO15	3500	.200	5.04	2.0	50.8	2.8	71	.047	1.2	5.06	2.3
DO27	1200	.375	9.5	2.0	50.8	2.8	71	.047	1.2	3.52	1.6
D027A/C	1200	.375	9.5	2.0	50.8	2.8	71	.047	1.2	5.06	2.3
DO41	5000	.200	5.04	2.0	50.8	2.8	71	.047	1.2	5.76	2.6
G1	4000	.200	5.04	2.0	50.8	2.8	71	.047	1.2	5.76	2.6
G3	1500	.375	9.5	2.0	50.8	2.8	71	.047	1.2	4.8	2.2
GPD	4000	.200	5.04	2.0	50.8	2.8	71	.047	1.2	3.74	1.7

REEL PACKAGING (Metric Specification)

COMPONENT CASE TYPE*	UNITS PER SPAC		CING SPACING		APPROX. REEL DIMENSION		MAX OFF ALIGNMENT "E" FIG. 1		APPROX. GROSS WEIGHT PER REEL PACKED		
		in.	mm	in.	mm	in.	mm	in.	mm	lbs.	kg.
DO15	3500	.197	5	2.062	52.4	2.8	71	.047	1.2	5.06	2.3
DO27	1200	.394	10	2.062	52.4	2.8	71	.047	1.2	3.52	1.6
DO27A	1200	.394	10	2.062	52.4	2.8	71	.047	1.2	5.06	2.3
DO41	5000	.197	5	2.062	52.4	2.8	71	.047	1.2	5.76	2.6
G1	4000	.197	5	2.062	52.4	2.8	71	.047	1.2	5.76	2.6
G3	1500	.394	10	2.062	52.4	2.8	71	.047	1.2	4.8	2.2
GPD	4000	.197	5	2.062	52.4	2.8	71	.047	1.2	3.74	1.7

^{*} Rectifier type numbers versus product families (GPD, G1 etc.) please see Numerical Index page 6/7

Bulk Packaging Diodes and Rectifiers

Device Type	Box	Size	Quantity No. of Pieces	Approx. Gross Weight		
	in.	cm		lbs.	kg	
	RECT	IFIERS				
DO41, GP10, GPD	8 x 3.5 x 1	20.3 x 8.8 x 2.54	1000	.81/.83/.52	.37/.38/.24	
GP15, G1	8 x 3.5 x 1	20.3 x 8.8 x 2.54	500	0.55	0.25	
DO27, P100, P300, GP20	12 x 3.2 x 2.5	30.4 x 8.1 x 6.3	1000	1.76/2.86/1.78	.80/1.3/.81	
P600	12 x 3.2 x 2.5	30.4 x 8.1 x 6.3	500	2.64	1.2	
DO27A/C, GP30, GP25, G3	12 x 3.2 x 2.5	30.4 x 8.1 x 6.3	1000	2.86	1.3	
AR25	Plasti	c Bag	200	7.26	3.3	
HVPR10-1	7 x 5 x 3.4	17.7 x 12.8 x 8.6	50	4.84	2.2	
HVPR15-4	7.8 x 7.8 x 1.8	19.8 x 19.8 x 4.5	100	2.86	1.3	
HVPR20-80	7.5 x 10 x 2.2	19 x 25.4 x 5.5	200	0.66	0.3	
	BRIG	OGES				
BC800	10.5 x 2.75 x 2.5	26.7 x 7 x 6.3	250	1.21	0.55	
BC1000	10.5 x 2.75 x 2.5	26.7 x 7 x 6.3	250	1.21	0.55	
BC1500	10.5 x 2.75 x 2.5	26.7 x 7 x 6.3	250	1.21	0.55	
W, WOM, WL, 2W	10.5 x 2.75 x 2.5	26.7 x 7 x 6.3	250	1.21	0.55	
KBP	8.3 x 6.5 x 2.3	21 x 16.5 x 5.8	200	0.77	0.35	
KBL	9 x 6 x 2.2	22.8 x 15.2 x 5.5	200	3.08	1.3	
KBF	6 x6 x2	15.2 x 15.2 x 5.1	100	1.54	0.7	
KBPC8	8.8 x 8.8 x 1.8	22.3 x 22.3 x 4.5	200	3.52	1.6	
KBPC	8.8 x 8.8 x 1.2	21 x 22.3 x 3	200	2.86	1.3	
KBPC1, KBPC6	4.8 x 7.8 x 1.8	19.8 x 19.8 x 4.5	200	1.87/.66	.85/.3	
КВРСЗ	8 x 6.3 x 2.2	20.3 x 16 x 5.5	50	3.74	1.7	
K8PC10/25/35 With Faston Term.	10 x 6.3 x 1.7	25.4 x 16 x 4.3	50	3.08	1.4	
KBPC10/25/35 With Leads	10 x 6.3 x 1.7	25.4 x 16 x 4.3	40	4.07	1.85	

A. Tape and Reel Packaging of Axial Lead Units

Axial lead units are packed in accordance with EIA Standard RS-296-C plus specifications given below and the diagrams given below which are referred to in the specifications.

1. Reeling

- A. Component leads are positioned between tapes as shown in Fig. 1.
- B. A minimum of 30 cm of tape is provided before the first unit and after the last unit on the reel.
- C. 23 kg kraft paper is wound between layers of components and extended beyond the tape sufficiently to protect the components.
- D. A maximum of ten components may be omitted from any 3 m length and a maximum of two consecutive components may be missing if this omission is followed by six consecutive components.

2. Tolerances

- A. Bending of components leads is held to the off-alignment dimension shown in Column E and indicated by E in Fig. 1.
- B. The C dimension of Fig. 3 is between 3 mm and 6 mm greater than the length of the component involved. See F, Fig. 1.
- C. The units are held between an perpendicular to a colored tape and a white tape. Polarized units are oriented in one direction with the cathode lead being held by the colored type. The spacing between leads is shown in Column A in the table and A in Fig. 1.
- D. Units are centered between tapes 1.2 mm but individual units may deviate from center of row ±0.7 mm. See Fig. 1.

NOTES

GENERAL INSTRUMENT EUROPE

EUROPEAN HEADQUARTERS

52 Rue de Faubourg · Saint Honoré · 75008 Paris Tel.: 2665634 · Telex: 641078

EUROPEAN APPLICATION LABORATORY

Neumarkter Straße 61 · 8000 München 80 Tel.: 089/491004 · Telex: 05-24523

EUROPEAN SALES OFFICES

FRANCE

General Instrument France 11/13, Rue Gandon · 75013 Paris Tel.: 5848731 · Telex: 260766

GERMANY, AUSTRIA AND SWITZERLAND

General Instrument Deutschland GmbH Neumarkter Str. 61 · 8000 München 80 Tel.: 089/491004 · Telex: 05-24523

ITALY

C.P. Clare Elettronica SRL · Divisione Semiconduttori Via Anfossi 32 · Milano Tel.: 02/5465514, 02/5469187 · Telex: 320348

UNITED KINGDOM

General Instrument U.K.Ltd.

Cock Lane 2 · High Wycombe-Buckinghamshire

Tel.: 445311 · Telex: 83691

OTHER COUNTRIES

General Instrument Deutschland GmbH Neumarkter Str. 61 · 8000 München 80 Tel.: 089/491004 · Telex: 05-24523

GENERAL INSTRUMENT CORPORATION

DISCRETE SEMICONDUCTOR DIVISION 600 West John Street, Hicksville, N.Y. 11802, (516) 733-3333 TWX: 510-221-1865

	*		